Experimental evidence is reported for the first intermediate in the classic SEAr reaction of benzene nitration with mixed acid. The UV/Vis spectroscopic investigation of the reaction showed an intense absorption at 320 nm (appearing as a band shoulder) arising from a reaction intermediate. Our theoretical modeling shows that the interaction between the two principal reactants with solvent (H2SO4) molecules significantly affects the structure of the initial complex. In this complex, a larger distance between the aromatic ring and nitronium ion precludes the possibility for electronic charge transfer from the benzene π-system to the electrophile. The computational modeling of the potential energy surface reveals that the reaction favors a stepwise mechanism with intermediate formation of π- and σ-(arenium ion) complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201506959DOI Listing

Publication Analysis

Top Keywords

benzene nitration
8
nitration mixed
8
mixed acid
8
experimentally established
4
established key
4
intermediate
4
key intermediate
4
intermediate benzene
4
acid experimental
4
experimental evidence
4

Similar Publications

Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.

View Article and Find Full Text PDF

Zeolites are used in the field of toluene nitrification reactions, but their intrinsic mechanism is not well explained. In this work, three typical zeolites including HZSM-5, HY, and Hβ are selected as catalysts and used for the nitration of toluene and typical monosubstituted benzenes with NO, and it explores the intrinsic influences on the nitrification of toluene on various zeolites through experimental and theoretical methods. The acidic properties and pore structures of three different zeolites were investigated through appropriate characterization techniques.

View Article and Find Full Text PDF

The aqueous-phase conversion of phenolic compounds (PhCs) driven by nitrite photolysis has been recognized as a significant source of secondary brown carbon (BrC). However, the influence of pH on the conversion kinetics and product distribution of PhCs remains unclear. In this study, three representative PhCs with varying functional groups were selected to examine their aqueous-phase conversion kinetics in the presence of nitrite under different pH conditions and simulated sunlight conditions.

View Article and Find Full Text PDF

Dark aqueous-phase reactions involving the nitrosation and nitration of aromatic organic compounds play a significant role in the production of light-absorbing organic carbon in the atmosphere. This process constitutes a crucial aspect of tropospheric chemistry and has attracted growing research interest, particularly in understanding the mechanisms governing nighttime reactions between phenols and nitrogen oxides. In this study, we present new findings concerning the rapid dark reactions between phenols containing electron-donating groups and inorganic nitrite in acidic aqueous solutions with pH levels <3.

View Article and Find Full Text PDF

Electrophilic aromatic nitrations are used for the preparation of a variety of synthetic products including dyes, agrochemicals, high energy materials, fine chemicals and pharmaceuticals. Traditional nitration methods use highly acidic and corrosive mixed acid systems which present a number of drawbacks. Aside from being hazardous and waste-producing, these methods also often result in poor yields, mostly due to low regioselectivity, and limited functional group tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!