The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers.

Molecules

Centre for Green Chemistry & Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, Monash University, Melbourne, VIC 3800, Australia.

Published: September 2015

Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E)-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332243PMC
http://dx.doi.org/10.3390/molecules200917601DOI Listing

Publication Analysis

Top Keywords

imprinted polymers
16
molecularly imprinted
12
target molecule
8
template molecules
8
application template
4
selectophores
4
template selectophores
4
selectophores preparation
4
preparation molecularly
4
imprinted
4

Similar Publications

For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.

View Article and Find Full Text PDF

Pyrrole in a cholesteric liquid crystal was discharged using a Tesla coil to generate pyrrole radicals, affording linear-shaped nano-ordered pyrrole oligomers. Subsequently, the electrochemical polymerisation of a pre-oriented pyrrole oligomer having good affinity for liquid crystals was performed to achieve polypyrrole-imprinted asymmetry from the cholesteric liquid crystal structure. The resultant polymers were analysed using polarising optical microscopy observations, scanning electron microscopy, electrochemistry, optical spectroscopy, and electron spin resonance.

View Article and Find Full Text PDF

In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.

View Article and Find Full Text PDF

Microbial crosstalk with dermal immune system: A review on emerging analytical methods for macromolecular detection and therapeutics.

Int J Biol Macromol

December 2024

Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India. Electronic address:

According to global health metrics, clinical symptoms such as cellulitis and pyoderma associated with skin diseases are a significant burden worldwide, affecting 2.2 million disability-adjusted life years in 2020. There is a strong correlation between the commensal bacteria and the host immune system.

View Article and Find Full Text PDF

A sensitive and efficient fluorescent sensor based on a magnetic manganese-doped zinc sulfide molecularly imprinted probe (FeO/Mn-ZnS/MIP) was successfully developed for the detection of chlorpyrifos (CPF). The probe combined the advantages of magnetic separation, the fluorescence properties of Mn-ZnS, and the exceptional molecule recognition capabilities of molecularly imprinted polymers. The developed sensor exhibits selective binding to CPF, resulting in a quenching of fluorescence intensity of FeO/Mn-ZnS/MIP by a photo-induced electron transfer mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!