Structurally Diverse π-Extended Conjugated Polycarbo- and Heterocycles through Pd-Catalyzed Autotandem Cascades.

Chemistry

Departamento de Química Orgánica e Inorgánica and, Instituto Universitario de Química Organometálica, "Enrique Moles", Universidad de Oviedo, c/Julián Clavería 8, Oviedo 33066 (Spain).

Published: November 2015

The Pd-catalyzed reaction between 2,2'-dibromobiphenyls and related systems with tosylhydrazones gives rise to new π-extended conjugated polycarbo- and heterocycles through an autotandem process involving a cross-coupling reaction followed by an intramolecular Heck cyclization. The reaction shows wide scope regarding both coupling partners. Cyclic and acyclic tosylhydrazones can participate in the process. Additionally, a variety of aromatic and heteroaromatic dibromoderivatives have been employed, leading to an array of diverse scaffolds featuring a fluorene or acridine central nucleus, and containing binaphthyl, thiophene, benzothiophene and indole moieties. The application to appropriate tetrabrominated systems led to greater structural complexity through two consecutive autotandem cascades. The photophysical properties of selected compounds were studied through their absorption and emission spectra. Fluorescence molecules featuring very high quantum yields were identified, showing the potential of this methodology in the development of molecules with interesting optoelectronic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201503080DOI Listing

Publication Analysis

Top Keywords

π-extended conjugated
8
conjugated polycarbo-
8
polycarbo- heterocycles
8
autotandem cascades
8
structurally diverse
4
diverse π-extended
4
heterocycles pd-catalyzed
4
pd-catalyzed autotandem
4
cascades pd-catalyzed
4
pd-catalyzed reaction
4

Similar Publications

Trimethylamine-N-oxide (TMAO) is gut microbiota-derived metabolite, plays a critical role in human health and diseases such as metabolic, cardiovascular, colorectal cancer and, neurological disorders. Binding interactions between TMAO and serum albumins are crucial to understand the impact of TMAO on disease mechanisms. However, detailed insights into the interaction mechanisms, preferred binding locations, and conformational changes in BSA upon binding TMAO are still unclear.

View Article and Find Full Text PDF

Cancer remains the second leading cause of death globally, driving the need for innovative therapies. Among natural compounds, maytansinoids have shown significant promise, contributing to nearly 25% of recently approved anticancer drugs. Despite their potential, early clinical trials faced challenges due to severe side effects, prompting advancements in delivery systems such as antibody-maytansinoid conjugates (AMCs).

View Article and Find Full Text PDF

Humanized dual-targeting antibody-drug conjugates specific to MET and RON receptors as a pharmaceutical strategy for the treatment of cancers exhibiting phenotypic heterogeneity.

Acta Pharmacol Sin

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Cancer heterogeneity, characterized by diverse populations of tumorigenic cells, involves the occurrence of differential phenotypes with variable expressions of receptor tyrosine kinases. Aberrant expressions of mesenchymal-epithelial transition (MET) and recepteur d'origine nantais (RON) receptors contribute to the phenotypic heterogeneity of cancer cells, which poses a major therapeutic challenge. This study aims to develop a dual-targeting antibody-drug conjugate (ADC) that can act against both MET and RON for treating cancers with high phenotypic heterogeneity.

View Article and Find Full Text PDF

Conjugated coordination polymers (c-CPs), a novel class of organic-inorganic hybrid materials, are distinguished by their unique structural characteristics and exceptional charge transport properties. The electronic properties of these materials are critically determined by the constituting coordination atoms, with electron-rich selenol ligands emerging as promising candidates for constructing high-mobility semiconducting c-CPs. Currently, c-CPs incorporating selenium-substituted ligands remain scarce.

View Article and Find Full Text PDF

Specialized pro-resolving lipid mediators: a key player in resolving inflammation in autoimmune diseases.

Sci Bull (Beijing)

January 2025

Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China. Electronic address:

Uncontrolled hyperactivation of the immune system is the central mechanism underlying the pathogenesis of autoimmune diseases. Timely control of the inflammatory response is essential to prevent inflammation progression and organ damage. Specialized pro-resolving lipid mediators (SPMs) are autacoid molecules derived from essential polyunsaturated fatty acids during acute inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!