In this work, we show that the size and shape of Pt nanoparticles in SBA-15 can be controlled through vacuum and air calcination. The vacuum-calcination/H2-reduction process is used to thermally treat a 0.2 wt% Pt(4+)/SBA-15 sample to obtain small 2D clusters and single atoms that can significantly increase Pt dispersion in SBA-15. Compared with thermal treatments involving air-calcination/H2-reduction, which result in ∼4.6 nm rod-like Pt particles, vacuum-calcination/H2-reduction can dramatically reduce the size of the Pt species to approximately 0.5-0.8 nm. The Pt particles undergoing air-calcination/H2-reduction have poor conversion efficiency because the fraction of terrace sites, the major sites for CO oxidation, on the rod-like Pt particles is small. In contrast, a large amount of low-coordinated Pt sites associated with 2D Pt species and single Pt atoms in SBA-15 is effectively generated through the vacuum-calcination/H2-reduction process, which may facilitate CO adsorption and induce strong reactivity toward CO oxidation. We investigated the effect of vacuum-calcination/H2-reduction on the formation of tiny 2D clusters and single atoms by characterizing the particles, elucidating the mechanism of formation, determining the active sites for CO oxidation and measuring the heat of CO adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr04943a | DOI Listing |
J Chem Phys
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.
View Article and Find Full Text PDFSmall Methods
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.
View Article and Find Full Text PDFSmall
January 2025
College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!