Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanocarbon materials, including sp(2) hybridized two-dimensional graphene and one-dimensional carbon nanotubes, and sp(1) hybridized one-dimensional carbyne, are being considered for the next generation of integrated optoelectronic devices. The strong electron-phonon coupling present in these nanocarbon materials makes Raman spectroscopy an ideal tool to study and characterize the material and device properties. Near-field Raman spectroscopy combines non-destructive chemical, electrical, and structural specificity with nanoscale spatial resolution, making it an ideal tool for studying nanocarbon systems. Here we use near-field Raman spectroscopy to study strain, defects, and doping in different nanocarbon systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5fd00050e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!