The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581715 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138453 | PLOS |
Addict Biol
January 2025
Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
The ability of environmental cues to trigger alcohol-seeking behaviours is thought to facilitate problematic alcohol use. Individuals' tendency to attribute incentive salience to cues may increase the risk of addiction. We sought to study the relationship between incentive salience and alcohol addiction using non-preferring rats to model the heterogeneity of human alcohol consumption, investigating both males and females.
View Article and Find Full Text PDFHum Reprod Open
November 2024
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?
Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.
What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.
Front Microbiol
December 2024
Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
dna2bit is an ultra-fast software specifically engineered for microbial genome analysis, particularly adept at calculating genome distances within metagenome and single amplified genome datasets. Distinguished from existing software such as Mash and Dashing, dna2bit employs feature hashing technique and Hamming distance to achieve enhanced speed and memory utilization, without sacrifice in the accuracy of average nucleotide identity calculations. dna2bit has promising applications in various domains such as average nucleotide identity approximation, metagenomic sequence clustering, and homology querying.
View Article and Find Full Text PDFHuman endocrine cell differentiation and islet morphogenesis play critical roles in determining islet cell mass and function, but the events and timeline of these processes are incompletely defined. To better understand early human islet cell development and maturation, we collected 115 pediatric pancreata and mapped morphological and spatiotemporal changes from birth through the first ten years of life. Using quantitative analyses and a combination of complementary tissue imaging approaches, including confocal microscopy and whole-slide imaging, we developed an integrated model for endocrine cell formation and islet architecture, including endocrine cell type heterogeneity and abundance, endocrine cell proliferation, and islet vascularization and innervation.
View Article and Find Full Text PDFThe rate of input of new genetic mutations, and the rate at which that variation is reshuffled, are key evolutionary processes shaping genomic diversity. Importantly, these rates vary not just across populations and species, but also across individual genomes. Despite previous studies having demonstrated that failing to account for rate heterogeneity across the genome can bias the inference of both selective and neutral population genetic processes, mutation and recombination rate maps have to date only been generated for a relatively small number of organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!