It is currently thought that the lackluster performance of translational paradigms in the prevention of age-related cognitive deteriorative disorders, such as Alzheimer's disease (AD), may be due to the inadequacy of the prevailing approach of targeting only a single mechanism. Age-related cognitive deterioration and certain neurodegenerative disorders, including AD, are characterized by complex relationships between interrelated biological phenotypes. Thus, alternative strategies that simultaneously target multiple underlying mechanisms may represent a more effective approach to prevention, which is a strategic priority of the National Alzheimer's Project Act and the National Institute on Aging. In this review article, we discuss recent strategies designed to clarify the mechanisms by which certain brain-bioavailable, bioactive polyphenols, in particular, flavan-3-ols also known as flavanols, which are highly represented in cocoa extracts, may beneficially influence cognitive deterioration, such as in AD, while promoting healthy brain aging. However, we note that key issues to improve consistency and reproducibility in the development of cocoa extracts as a potential future therapeutic agent requires a better understanding of the cocoa extract sources, their processing, and more standardized testing including brain bioavailability of bioactive metabolites and brain target engagement studies. The ultimate goal of this review is to provide recommendations for future developments of cocoa extracts as a therapeutic agent in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-150536 | DOI Listing |
J Food Drug Anal
December 2024
Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.
Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.
View Article and Find Full Text PDFJ Imaging
December 2024
Laboratoire Imagerie et Vision Artificielle (ImVia), Université de Bourgogne, 21000 Dijon, France.
Determining the maturity of cocoa pods early is not just about guaranteeing harvest quality and optimizing yield. It is also about efficient resource management. Rapid identification of the stage of maturity helps avoid losses linked to a premature or late harvest, improving productivity.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
December 2024
Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
Chromatin compartmentalization and epigenomic modification are crucial in cell differentiation and diseases development. However, precise mapping of chromatin compartmental patterns requires Hi-C or Micro-C data at high sequencing depth. Exploring the systematic relationship between epigenomic modifications and compartmental patterns remains challenging.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
The negative impact of agricultural land on biodiversity is widely recognized. However, there remains a knowledge gap regarding the role of different crop types in maintaining biodiversity within the agricultural landscape. By extracting biodiversity data from global datasets and classifying different crop types, we quantified the contribution of different crop types to biodiversity.
View Article and Find Full Text PDFCurr Res Food Sci
November 2024
Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Cocoa shell is a by-product generated by the cocoa processing industry, notable for its high content of phenolic compounds and methylxanthines, and recognized for their biological properties. The majority of cocoa phenolic compounds are not absorbed in the small intestine and reach the colon, where they can be catabolized by the gut microbiota, influencing their bioavailability and bioactivity. This research aimed to study the changes that phenolic compounds from cocoa shell flour (CSF) and extract (CSE) undergo during colonic fermentation after gastrointestinal digestion, using an model and a targeted metabolomics approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!