Objective: To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia.
Methods And Design: Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20-22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion.
Results: Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion.
Conclusions: Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581632 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138558 | PLOS |
Se Pu
January 2025
School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
Environ Sci Technol
December 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
Exposure to perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) was associated with adipogenesis. However, potential mechanisms remain to be elucidated. Herein, a 3T3-L1 adipocyte model was used to explore the dynamic changes in adipocyte differentiation (2, 4, and 8 days) under PFOA and HFPO-DA exposure.
View Article and Find Full Text PDFCureus
November 2024
Department of Pediatrics, Teikyo University School of Medicine, Tokyo, JPN.
Background Alveolar echinococcosis (AE) is a fatal zoonotic disease distributed mainly in the Northern Hemisphere. At present, its curative treatment relies on surgery, and the development of effective drugs is needed. We previously demonstrated the anti-echinococcal effect of atovaquone (ATV) as a mitochondrial complex III inhibitor in both in vitro and in vivo experiments.
View Article and Find Full Text PDFChemistry
December 2024
National Taiwan University Hospital, Immune Research Core, Department of Medical Research, TAIWAN.
The development of multifunctional therapeutic agents is crucial for addressing complex diseases such as Alzheimer's disease. Herein, we report a ruthenium-rhenium (Ru-Re) complex that combines photodynamic therapy (PDT) and carbon monoxide (CO) generation capabilities. The Ru-Re complex shows promising photophysical property and significant therapeutic potential.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2024
Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
is the second most common cause of invasive candidiasis and is widely known to have reduced susceptibility to fluconazole relative to many other spp. Upc2A is a transcription factor that regulates ergosterol biosynthesis gene expression under conditions of sterol stress such as azole drug treatment or hypoxia. Through an microevolution experiment, we found that loss-of-function mutants of the ATF/CREB transcription factor suppresses the fluconazole hyper-susceptibility of the ∆ mutant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!