Objective: The capacity of thymomas to generate mature CD4+ effector T cells from immature precursors inside the tumor and export them to the blood is associated with thymoma-associated myasthenia gravis (TAMG). Why TAMG(+) thymomas generate and export more mature CD4+ T cells than MG(-) thymomas is unknown.

Methods: Unfixed thymoma tissue, thymocytes derived thereof, peripheral blood mononuclear cells (PBMCs), T-cell subsets and B cells were analysed using qRT-PCR and western blotting. Survival of PBMCs was measured by MTT assay. FAS-mediated apoptosis in PBMCs was quantified by flow cytometry. NF-κB in PBMCs was inhibited by the NF-κB-Inhibitor, EF24 prior to FAS-Ligand (FASLG) treatment for apoptosis induction.

Results: Expression levels of the apoptosis inhibitor cellular FLICE-like inhibitory protein (c-FLIP) in blood T cells and intratumorous thymocytes were higher in TAMG(+) than in MG(-) thymomas and non-neoplastic thymic remnants. Thymocytes and PBMCs of TAMG patients showed nuclear NF-κB accumulation and apoptosis resistance to FASLG stimulation that was sensitive to NF-κB blockade. Thymoma removal reduced cFLIP expression in PBMCs.

Interpretation: We conclude that thymomas induce cFLIP overexpression in thymocytes and their progeny, blood T cells. We suggest that the stronger cFLIP overexpression in TAMG(+) compared to MG(-) thymomas allows for the more efficient generation of mature CD4+ T cells in TAMG(+) thymomas. cFLIP overexpression in thymocytes and exported CD4+ T cells of patients with TAMG might contribute to the pathogenesis of TAMG by impairing central and peripheral T-cell tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574807PMC
http://dx.doi.org/10.1002/acn3.210DOI Listing

Publication Analysis

Top Keywords

cflip overexpression
16
mature cd4+
12
cd4+ cells
12
mg- thymomas
12
cells
9
thymoma-associated myasthenia
8
myasthenia gravis
8
thymomas generate
8
tamg+ thymomas
8
blood cells
8

Similar Publications

Triple-negative breast cancer (TNBC) presents therapeutic challenges due to limited targeted treatment options and resistance to chemotherapy drugs, such as doxorubicin. This study investigated doxorubicin resistance mechanisms and a strategy to overcome it. A doxorubicin-resistant cell subline (231-DR) was developed from MDA-MB-231 TNBC cells, and enhanced expression of cellular FLICE-inhibitory protein (cFLIP) in 231-DR cells was identified as a potential driver of the resistance.

View Article and Find Full Text PDF

Indirect targeting of MYC and direct targeting in combination with chemotherapies are more effective than direct mono-targeting in triple negative breast cancer.

Transl Oncol

January 2025

Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy, Seoul, South Korea; R&D Center, ABION Inc., Seoul 08394, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Graduate School of Convergence Science and Technology, Seoul, South Korea; Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea. Electronic address:

MYC amplification is disproportionally elevated in triple-negative breast cancer (TNBC) compared to other subtypes of breast cancer. Indeed, MYC has long been considered an undruggable oncogene using conventional drug design strategies or small molecules. We hypothesized that targeting MYC using asymmetric siRNA (asiRNA) alone or in combination with chemotherapeutic agents or indirectly via BRD4 and RRM2, may curb its oncogenic behavior.

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells.

View Article and Find Full Text PDF

Regulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gram-negative bacterial pathogens in the Yersinia genus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system, thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection, Yersinia blockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival.

View Article and Find Full Text PDF

Glutamine-mediated epigenetic regulation of cFLIP underlies resistance to TRAIL in pancreatic cancer.

Exp Mol Med

April 2024

Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!