Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487307 | PMC |
http://dx.doi.org/10.6028/jres.118.021 | DOI Listing |
Molecules
December 2024
Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
Studies on radiosensitization of biological damage by O began about a century ago and it remains one of the most significant subjects in radiobiology. It has been related to increased production of oxygen radicals and other reactive metabolites, but only recently to the action of the numerous low-energy electrons (LEEs: 0-30 eV) produced by ionizing radiation. We provide the first complete set of G-values (yields of specific products per energy deposited) for all conformational damages induced to plasmid DNA by LEEs (G (O)) and 1.
View Article and Find Full Text PDFCells
December 2024
Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK.
Photon (X-ray) radiotherapy is the most common treatment used in cancer therapy. However, the exposure of normal tissues and organs at risk to ionising radiation often results in a significant incidence of low-grade adverse side effects, whilst high-grade toxicities also occur at concerningly high rates. As an alternative, boron neutron capture therapy (BNCT) aims to create densely ionising helium and lithium ions directly within cancer cells, thus sparing the surrounding normal cells and tissues but also leading to significantly more effective tumour control than X-rays.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy.
: Primary gynecological melanomas are rare malignancies with lower survival rates compared to cutaneous melanomas. Both preclinical and clinical data support the evidence that mucosal melanomas are photon-radioresistant but responsive to carbon ion radiotherapy (CIRT). The aim of this study is to assess, in a real-world cohort, the effectiveness and tolerability of radical CIRT in patients with inoperable gynecological mucosal melanoma.
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Radiobiology Lab, Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
Background: Esophageal cancer has a poor prognosis despite treatment advancements. Although the benefit of neoadjuvant chemoradiotherapy (CRT) followed by adjuvant immunotherapy is evident, the effects of CRT on PD-L1 expression in esophageal cancer are not well understood. This study examines the impact of neoadjuvant CRT on PD-L1 surface expression in esophageal cancer both and considering its implications for immunotherapy.
View Article and Find Full Text PDFJ Natl Cancer Inst
January 2025
Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom.
Purpose: Overlapping genes are involved with rheumatoid arthritis (RA) and DNA repair pathways. Therefore, we hypothesised that patients with a high polygenic risk score (PRS) for RA will have an increased risk of radiotherapy (RT) toxicity given the involvement of DNA repair.
Methods: Primary analysis was performed on 1494 prostate cancer, 483 lung cancer and 1820 breast cancer patients assessed for development of RT toxicity in the REQUITE study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!