There is increasing interest in the colonic microbiota as a relevant source of uremic retention solutes accumulating in CKD. Renal disease can also profoundly affect the colonic microenvironment and has been associated with a distinct colonic microbial composition. However, the influence of CKD on the colonic microbial metabolism is largely unknown. Therefore, we studied fecal metabolite profiles of hemodialysis patients and healthy controls using a gas chromatography-mass spectrometry method. We observed a clear discrimination between both groups, with 81 fecal volatile organic compounds detected at significantly different levels in hemodialysis patients and healthy controls. To further explore the differential impact of renal function loss per se versus the effect of dietary and other CKD-related factors, we also compared fecal metabolite profiles between patients on hemodialysis and household contacts on the same diet, which revealed a close resemblance. In contrast, significant differences were noted between the fecal samples of rats 6 weeks after 5/6th nephrectomy and those of sham-operated rats, still suggesting an independent influence of renal function loss. Thus, CKD associates with a distinct colonic microbial metabolism, although the effect of renal function loss per se in humans may be inferior to the effects of dietary and other CKD-related factors. The potential beneficial effect of therapeutics targeting colonic microbiota in patients with CKD remains to be examined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849823 | PMC |
http://dx.doi.org/10.1681/ASN.2015030279 | DOI Listing |
mSphere
January 2025
Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People's Republic of China.
Aim: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.
Methods: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.
Anim Sci J
January 2025
National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China.
Weaning is essential for foal growth and development. We determined the intestinal flora structure of donkey foals at the end of weaning (PreW_4d) and three stages after weaning (PostW_4d, PostW_8d, and PostW_15d) to explore the effects of weaning on intestinal development of donkey foals. The results showed that the main microbial flora in the gut of the donkey foal were Firmicutes and Bacteroides, and the proportion of Firmicutes gradually increased with weaning, which was an important reflection of the donkey foal's adaptability to the transition from lactose liquid feed to plant fiber solid feed.
View Article and Find Full Text PDFFood Funct
January 2025
Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja-UR, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, - salida 13), 26007 Logroño, Spain.
Over the last decade, research has emphasized the role of the microbiome in regulating cardiovascular physiology and disease progression. Understanding the interplay between wine polyphenols, the gut microbiota, and cardiovascular health could provide valuable insights for uncovering novel therapeutic strategies aimed at preventing and managing cardiovascular disease. In this study, two commercial red wines were subjected to dynamic gastrointestinal digestion (GIS) to monitor the flavanol-microbiota interaction by evaluating the resulting microbial metabolites.
View Article and Find Full Text PDFAging Dis
January 2025
Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.
The gut-brain axis is a bidirectional communication pathway that modulates cognitive function. A dysfunctional gut-brain axis has been associated with cognitive impairments during aging. Therefore, we propose evaluating whether modulation of the gut microbiota through fecal microbiota transplantation (FMT) from young-trained donors (YT) to middle-aged or aged mice could enhance brain function and cognition in old age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!