Kisspeptins are key players in the neuroendocrine control of puberty and other reproductive processes in mammals. Several studies have demonstrated that the KISS/GPR54 system is expressed by gonadotrophs, but in vitro studies assessing the direct stimulatory effects of kisspeptin on gonadotropin secretion in the pituitary have provided conflicting results. In this study, we investigated whether kisspeptin directly influences the reproductive function of sea bass pituitary. First, the highly active peptides Kiss1-15 and Kiss2-12 were used to stimulate dispersed sea bass pituitary cells obtained from mature males. Our results show that, first, Kiss2-12 induced luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) release, whereas Kiss1-15 had no effect on gonadotropin secretion at full spermiation stage. Second, the distribution and nature of Kiss2 and its potential interactions with the gonadotropin-releasing hormone 1 (Gnrh1) system in the pituitary were analyzed using dual fluorescence immunohistochemistry. Kiss2 cells were found in the proximal pars distalis and colocalized with gonadotropin-immunoreactive cells. In summary, our results provide, for the first time in a teleost species, functional and neuroanatomical evidence that Kiss2 may act through different routes to directly modulate the activity of gonadotrophs, either as a hypophysiotropic neuropeptide or as an autocrine/paracrine factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.115.131029 | DOI Listing |
Front Immunol
January 2025
Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
Introduction: The AB-type toxin AIP56 is a key virulence factor of Photobacterium damselae subsp. piscicida (Phdp), inducing apoptosis in fish immune cells. The discovery of AIP56-like and AIP56-related toxins in diverse organisms, including human-associated Vibrio strains, highlights the evolutionary conservation of this toxin family, suggesting that AIP56 and its homologs may share conserved receptors across species.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
This research aimed to explore the impact of tea polyphenol (TP) supplementation on the development, antioxidant properties, immune responses, and gut wellness in largemouth bass (, LMB). Four diets with varying levels of TPs (0.00%, 0.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China.
The experiment was aimed at examining the influence of adding emodin to feeds on the growth performance, liver immunity, and resistance against infection among juvenile largemouth basses and other potential mechanisms. A total of 540 fish (45 ± 0.3 g) were randomly divided into 6 diets, including EM-0, EM-250, EM-500, EM-1000, EM-2000, and EM-4000 diets, in which 0, 250, 500, 1000, 2000, and 4000 mg kg emodin was added.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Fisheries, Southwest University, Chongqing 400715, China.
Largemouth bass (LMB, ), a commercially important farmed fish, is vulnerable to heat stress. Breeding heat-resistant LMB is highly desirable in the face of global warming. However, we still lack an efficient method to assess the heat resistance of LMB.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
A seven-week trial was designed to evaluate the effects of dietary seaweed polysaccharide (SP) supplementation on the growth performance and physiological health of largemouth bass. The results reveal that the 0.05SP group showed the best growth performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!