Flowering time is an important trait for Japanese wheat breeding. Aegilops tauschii, the D-genome donor of hexaploid wheat, is a useful resource to enlarge the D-genome diversity of common wheat. Previously, we identified flowering-related QTLs in F2 populations of synthetic hexaploid wheat lines between the tetraploid wheat cultivar Langdon and Ae. tauschii accessions. Here, to evaluate the usefulness of the early-flowering alleles from Ae. tauschii for Japanese wheat breeding, QTL analyses were conducted in two F2 populations derived from crosses between Japanese wheat cultivars and early-flowering lines of synthetic hexaploid wheat. Only two chromosomal regions controlling flowering-related traits were identified, on chromosomes 2DS and 5AL in the mapping populations, and no previously identified QTLs were found in the synthetic hexaploid lines. The strong effect of the 2DS QTL, putatively corresponding to Ppd-D1, was considered to hide any significant expression of other QTLs with small effects on flowering-related traits. When F2 individuals carrying Ae. tauschii-homozygous alleles around the 2DS QTL region were selected, the Ae. tauschii-derived alleles of the previously identified flowering QTLs partly showed an early-flowering phenotype compared with the Japanese wheat-derived alleles. Thus, some early-flowering alleles from Ae. tauschii may be useful for production of early-flowering Japanese wheat cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1266/ggs.90.89DOI Listing

Publication Analysis

Top Keywords

japanese wheat
16
flowering-related traits
12
wheat cultivars
12
hexaploid wheat
12
synthetic hexaploid
12
wheat
10
populations derived
8
derived crosses
8
crosses japanese
8
common wheat
8

Similar Publications

Background: Anaphylaxis is a systemic allergic reaction that is potentially life-threatening. Occupational anaphylaxis is an anaphylaxis that occurs in an occupational context. In this position paper, we propose diagnostic criteria for occupational anaphylaxis and provide an overview of the current state of knowledge in terms of prevalence, triggers, prevention, and management.

View Article and Find Full Text PDF

Combining high-throughput genotyping data with the latest wheat genomic information provided more detailed information on the genetic diversity of the Japanese wheat core collection (JWC). Analysis of genomic population structure divided the JWC accessions into three populations: northeast Japan accessions, native and southwest Japan accessions, and modern accessions showing mixed breeding patterns. This indicates that Japanese wheat varieties have a background of native genomes from southwest Japan incorporating valuable genes from various exotic lines, which is supported by the history of Japanese wheat breeding.

View Article and Find Full Text PDF

Characterization of a new barley greenbug resistance gene Rsg4 in the Chinese landrace CI 2458.

Plant Genome

December 2024

USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA.

Article Synopsis
  • Barley is a versatile crop that can thrive in various growing conditions, contributing to food security, but faces threats from the greenbug pest, necessitating new resistance genes.
  • CI 2458, a landrace from China, shows resistance to 14 types of greenbugs, suggesting it has a new resistance gene named Rsg4, which was mapped to a specific region on chromosome 3HL.
  • The identification of Rsg4 is crucial for breeding programs, as it differs from existing resistance genes and enables the development of barley varieties that can withstand the damaging greenbug biotype TX1, using specific genetic markers for efficient selection.
View Article and Find Full Text PDF

In drug discovery and pharmacological research, early identification of target molecules for compounds with pharmacological effects is crucial. However, this process often requires significant effort and can be rate-limiting, thereby slowing down research progress. This paper introduces a simplified and rapid method for quick screening of binding compounds or proteins.

View Article and Find Full Text PDF

Furoviruses are bipartite viruses causing mosaic symptoms and stunting in cereals. Infection with these viruses can lead to severe crop losses. The virus species with soil-borne wheat mosaic virus (SBWMV), with soil-borne cereal mosaic virus (SBCMV) and with Japanese soil-borne wheat mosaic virus (JSBWMV) and French barley mosaic virus (FBMV) as members are biologically and genetically closely related.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!