Highly concentrated antibody solutions often exhibit high viscosities, which present a number of challenges for antibody-drug development, manufacturing and administration. The antibody sequence is a key determinant for high viscosity of highly concentrated solutions; therefore, a sequence- or structure-based tool that can identify highly viscous antibodies from their sequence would be effective in ensuring that only antibodies with low viscosity progress to the development phase. Here, we present a spatial charge map (SCM) tool that can accurately identify highly viscous antibodies from their sequence alone (using homology modeling to determine the 3-dimensional structures). The SCM tool has been extensively validated at 3 different organizations, and has proved successful in correctly identifying highly viscous antibodies. As a quantitative tool, SCM is amenable to high-throughput automated analysis, and can be effectively implemented during the antibody screening or engineering phase for the selection of low-viscosity antibodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966561 | PMC |
http://dx.doi.org/10.1080/19420862.2015.1099773 | DOI Listing |
Nano Lett
December 2024
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.
Increasing noise pollution has generated a tremendous threat to human health and incurred great economic losses. However, most existing noise-absorbing materials present a significant challenge in achieving lightweight, robust mechanical stability, and efficient low-frequency (<1000 Hz) noise reduction. Herein, we create highly compressible micro/nanofibrous sponges with thin-walled cavity structures for efficient noise reduction through electrospinning and dispersion casting.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Extreme Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Korea Institute of Science and Technology - Sungkyunkwan University Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:
Oil spill accidents have series environmental and economic impacts, increasing the demand for efficient technologies to recover oil from contaminated waters. In this study, a hierarchically structured ratchet surface with superhydrophilicity was presented as a novel oil skimming mechanism for the recovery of high-viscosity oil, particularly low-sulfur fuel oil (LSFO), which has recently been used as marine fuel in open water environments. The interaction between the superhydrophilic ratchet and oil provides favorable conditions for oil retention at the water surface.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
For many technological processes, the impact of water addition on the properties of deep eutectic solvents is of central importance. In this context, the impact of hydration on the reorientational dynamics of the deep eutectic solvent (DES) ethaline, a 2:1 molar mixture of ethylene glycol and choline chloride, was studied. Its overall response was explored by means of shear mechanical rheology.
View Article and Find Full Text PDFWater Res
December 2024
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Resilience to increasing organic loading rates (OLRs) is the key to maintaining stable performance in treating industrial wastewater. First, this study compared the stability, particularly the nitrification performance, of two lab-scale moving bed biofilm reactors (MBBRs) filled with porous polyurethane biocarriers with two conventional activated sludge reactors (ASRs) in the treatment of synthetic coking wastewater under OLRs increasing from 0.3 kg to 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!