Purpose: The aim of this study is to investigate the drop jump performance of male patients who underwent ACLR and a control group using combined data acquisition system.
Methods: A total of 28 male subjects aged 20 to 26 were studied: 22 did not show and were not diagnosed with any knee joint dysfunction (the control group) and six men who underwent ACLR of the left limb (group of patients). The control group was age, height and body mass matched. A data acquisition setup consisting of three independent modules including force platforms, position analysis system and electromyography was used. Subjects were jumping down from 0.1, 0.2, and 0.3 m step heights. The acquired signals were used to determine the ground reaction force, muscular activity, mass centre position, velocity and acceleration.
Results: Statistically significant differences were found between the groups (t-test, p < 0.05) in the maximum vertical ground reaction force in the left limb for 0.2 and 0.3 m step heights. Differences in the muscle activity between the groups were found to be statistically significant (t-test, p < 0.05) before the jump, during the landing phase, and after the jump for selected muscle groups and step heights.
Conclusion: Combing the three independent measurement systems provided new information on drop jump biomechanics. The distribution of loads in different muscles was not uniform across the groups. Patients allocated more energy to control their motion and seemed to protect their operated limb by shifting the bodyweight to the healthy limb.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!