Kinetic characterization of substrate-analogous inhibitors of tyrosinase.

IUBMB Life

Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum, " University of Murcia, Espinardo, Murcia, Spain.

Published: October 2015

AI Article Synopsis

  • The study focuses on developing effective tyrosinase inhibitors, which are crucial in cosmetics, medicine, and agriculture for controlling browning and pigmentation.
  • It highlights the complexity of tyrosinase activity, particularly with monophenols and the challenges in accurately identifying inhibition types due to an initial lag period in reactions.
  • Using benzoic acid and cinnamic acid as inhibitors, the research aims to propose a method for determining inhibition types and constants for tyrosinase's monophenolase and diphenolase activities.

Article Abstract

The development of effective tyrosinase inhibitors has become increasingly important in the cosmetic, medicinal, and agricultural industries for application as antibrowning and depigmenting agents. The kinetic mechanisms of action of tyrosinase on monophenols and o-diphenols are complex, particularly in the case of monophenols because of the lag period that occurs at the beginning of the reaction. When enzyme inhibitors are studied, the problem becomes more complicated because the lag period increases, which has led to erroneous identification of the type of inhibition that many compounds exert on the monophenolase activity and the inaccurate determination of their inhibition constants. When the degrees of inhibition of an inhibitor which is analogous to tyrosinase substrates are the same for both monophenolase and diphenolase activities, this means that the inhibitor binds to the same enzymatic species and so the inhibition constants should be similar for both activities. In this study, we demonstrate this typical behavior of substrate-analogous inhibitors and propose a methodology for determining the type of inhibition and the inhibition constants for the monophenolase and diphenolase activities of the enzyme. Benzoic acid and cinnamic acid were used as inhibitors and the monophenol/o-diphenol pairs l-tyrosine/l-dopa and α-methyl-L-tyrosine/α-methyl-L-dopa as substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.1432DOI Listing

Publication Analysis

Top Keywords

inhibition constants
12
substrate-analogous inhibitors
8
lag period
8
type inhibition
8
monophenolase diphenolase
8
diphenolase activities
8
inhibition
6
inhibitors
5
kinetic characterization
4
characterization substrate-analogous
4

Similar Publications

Unlabelled: Colorectal cancer is one of the most prevalent malignancies worldwide and a leading cause of mortality. Chemotherapy medications are often limited in use due to issues like drug resistance, P-glycoprotein efflux, and relapse of chemotherapy. In this study, we formulated a nanosuspension with curcumin and nimbin to address these limitations and assessed its anticancer potential using molecular docking and MTT assay.

View Article and Find Full Text PDF

c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines.

View Article and Find Full Text PDF

Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (K) of oxidative enzymes are orders of magnitude higher than respiratory K values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline.

View Article and Find Full Text PDF

Cellulase from for biofuel application: enzymatic characterization and inhibition tolerance investigation.

Prep Biochem Biotechnol

January 2025

Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India.

Halophilic bacteria are promising candidates for biofuel production because of their efficient cellulose degradation. Their cellulases exhibit high activity, even in the presence of inhibitors and under extreme conditions, making them ideal for biorefinery applications. In this study, we isolated a strain of (Kadal6) from decomposed cotton cloth on a Rameshwaram seashore.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!