Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem.

PLoS One

National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Narragansett, Rhode Island, United States of America.

Published: May 2016

Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580593PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137382PLOS

Publication Analysis

Top Keywords

larval adult
12
northeast shelf
12
shelf ecosystem
12
marine fish
12
changes
9
long-term changes
8
larval
8
fish northeast
8
fish distributions
8
impact population
8

Similar Publications

Evaluation of diflubenzuron-verapamil combination strategy for eco-safe management of .

Front Physiol

December 2024

Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, India.

Introduction: , the vector of multiple arboviral diseases, is a prime health concern worldwide. The surge in borne diseases emphasizes the urgent need for efficient vector control measures. Synthetic pesticides used traditionally, however, present environmental concerns and issues like resistance development, causing the use of higher chemical doses.

View Article and Find Full Text PDF

Histopathology of the infection in the freshwater fish, Tigris kingfish, and Tigris barb (Cypriniformes: Cyprinidae) from Iran.

Pol J Vet Sci

December 2024

Department of Aquatic Animal Health, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran.

Flukes can cause severe and lethal diseases in various animals, including fish. Both adult and larval stages of flukes are found in fish. Haplorchiasis is an infection of fish gills by heterophyid trematodes such as .

View Article and Find Full Text PDF

Human alveolar echinococcosis (HAE), which is caused by the larval stage of the Echinococcus multilocularis tapeworm, is an increasing healthcare issue in Hungary. Among the 40 known cases in the country, 25 were detected in the last five years. Our study aimed to reveal the geographically underlying risk factors associated potentially with these cases.

View Article and Find Full Text PDF

Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.

View Article and Find Full Text PDF

Spodoptera litura (Fabricius) is a major polyphagous pest of global relevance due to the damage it causes to various crops. Chlorpyrifos (CPF) is generally used by farmers to manage S. litura, however, its widespread use has resulted in the development of insecticide resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!