Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers means that we can only postulate why we were unable to obtain m-SKPs from the lion and red panda cultures. However the giant panda observations point to the value of archiving cells from rare species, and the possibilities for later progenitor cell derivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580591PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138840PLOS

Publication Analysis

Top Keywords

giant panda
24
buccal mucosa
12
endangered species
12
cells
10
panda ailuropoda
8
ailuropoda melanoleuca
8
multipotent progenitor
8
progenitor cells
8
red panda
8
panda
7

Similar Publications

Non-Structural Protein V of Canine Distemper Virus Induces Autophagy via PI3K/AKT/mTOR Pathway to Facilitate Viral Replication.

Int J Mol Sci

December 2024

Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China.

Canine distemper (CD) is a highly infectious disease of dogs which is caused by canine distemper virus (CDV). Previous studies have demonstrated that CDV infection can induce autophagy in cells. However, the mechanism underlying CDV-induced autophagy remains not fully understood.

View Article and Find Full Text PDF

Low Reproductivity of Giant Pandas May Be Associated with Increased Vaginal .

Microorganisms

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The poor reproductive capacity of giant pandas significantly hinders the development of captive populations, with 80.88% of adult individuals being unable to successfully become pregnant and deliver offspring. The disturbance of vaginal microbiota has been proven to potentially lead to miscarriage, abortion, and stillbirth in mammals.

View Article and Find Full Text PDF

Complete Mitochondrial Genomes of and with Phylogenetic Analysis of Charadriiformes.

Genes (Basel)

December 2024

Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China.

Background: Plovers (Charadriidae), within the order of Charadriiformes, a group of modern birds distributed worldwide, are a frequent subject of molecular phylogenetic studies. While research on mitochondrial genome (mitogenome) variation within the family Charadriidae, especially intraspecific variation, is limited. Additionally, the monophyly of and the phylogenetic placement of remain contentious.

View Article and Find Full Text PDF

Predicting Body Weight from Birth to Old Age in Giant Pandas Using Machine Learning.

Animals (Basel)

December 2024

Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The giant panda () is one of the animals with the largest body weight differences between its birth and adult stages, where the newborn cub is 0.1% the size of its mother. The rapid growth of panda cubs has been reported previously, but little is known about the growth pattern of their entire lifetime.

View Article and Find Full Text PDF

Comparative Analysis of Visitor Codes of Conduct in Chinese and Anglophone Zoos.

Animals (Basel)

December 2024

Geography and Tourism Studies, Brock University, St. Catharines, ON L2S 3A1, Canada.

Zoos worldwide use codes of conduct to regulate visitor behavior. Despite their global popularity, the ethical management of zoo visitors remains an underexplored area of research. This study analyzes 899 statements from 27 Chinese zoos and 22 zoos in predominantly English-speaking countries, uncovering significant cross-cultural similarities in the structure and content of these codes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!