Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp.

Bioresour Technol

Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, B.P. 20529, 60205 Compiègne Cedex, France.

Published: December 2015

The aim of this work was to investigate ultrasound (US)-assisted green solvent extraction of valuable compounds from the microalgae Nannochloropsis spp. Individual green solvents (water, ethanol (EtOH), dimethyl sulfoxide (DMSO)) and binary mixture of solvents (water-DMSO and water-EtOH) were used for the extraction procedures. Maximum total phenolic compounds yield (Yp ≈ 0.33) was obtained after US pre-treatment (W=400 W, 15 min), being almost 5-folds higher compared to that found for the untreated samples and aqueous extraction (Yp ≈ 0.06). The highest yield of total chlorophylls (Yc ≈ 0.043) was obtained after US (W=400 W, 7.5 min), being more than 9-folds higher than those obtained for the untreated samples and aqueous extraction (Yc ≈ 0.004). The recovery efficiency decreased as DMSO>EtOH>H2O. The optimal conditions to recover phenolic compounds and chlorophylls from microalgae were obtained after US pre-treatment (400 W, 5 min), binary mixtures of solvents (water-DMSO and water-EtOH) at 25-30%, and microalgae concentration of 10%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.09.020DOI Listing

Publication Analysis

Top Keywords

green solvent
8
solvent extraction
8
compounds microalgae
8
microalgae nannochloropsis
8
nannochloropsis spp
8
solvents water-dmso
8
water-dmso water-etoh
8
phenolic compounds
8
w=400 min
8
untreated samples
8

Similar Publications

Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety.

J Agric Food Chem

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, HO, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens.

View Article and Find Full Text PDF

The aging population necessitates a critical need for medical devices, where polymers-based surface lubrication coating is essential for optimal functionality. In fact, lubrication and mechanical requirements vary depending on the service environment of different medical devices. Until now, key mean is still blank for general preparation of hydrophilic polymers-based lubrication coatings with on-demand mechanics and lubricity.

View Article and Find Full Text PDF

Recent advances in optical heavy water sensors.

Chem Commun (Camb)

January 2025

Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.

DO and HO, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, DO and HO are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of HO in heavy water or , mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules.

View Article and Find Full Text PDF

Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.

View Article and Find Full Text PDF

Quantum Molecular Dynamics Approach to Understanding Interactions in Betaine Chloride and Amino Acid Natural Deep Eutectic Solvents.

ACS Phys Chem Au

January 2025

Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.

The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!