Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries.

Sci Total Environ

Environmental and Food Safety Research Group (SAMA-UV), Research Center on Desertification (CIDE, UV-CSIC-GV), Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.

Published: January 2016

Samples of dead honey bees (Apis mellifera L.) were collected periodically from 4 different locations during citrus and stone fruit trees blooming season to evaluate the potential impact of agrochemicals on honey bee death rate. For the determination of mortality, dead honey bee traps were placed in front of the experimental hives entrance located in areas of intensive agriculture in Valencian Community (Spain). A total of 34 bee samples, obtained along the monitoring period, were analyzed by means of QuEChERS extraction method and screened for 58 pesticides or their degradation products by LC-MS/MS. An average of four pesticides per honey bee sample was detected. Coumaphos, an organophosphate acaricide used against varroosis in the experimental hives, was detected in 94% of the samples. However, this acaricide was unlikely to be responsible for honey bee mortality because its constantly low concentration during all the monitoring period, even before and after acute mortality episodes. The organophosphates chlorpyrifos and dimethoate, as well as the neonicotinoid imidacloprid, were the most frequently detected agrochemicals. Almost 80% of the samples had chlorpyrifos, 68% dimethoate, and 32% imidacloprid. Maximum concentrations for these three compounds were 751, 403, 223 ng/g respectively. Influence of these pesticides on acute honey bee mortality was demonstrated by comparing coincidence between death rate and concentrations of chlorpyrifos, dimethoate and imidacloprid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.08.131DOI Listing

Publication Analysis

Top Keywords

honey bee
20
dead honey
8
death rate
8
experimental hives
8
monitoring period
8
bee mortality
8
chlorpyrifos dimethoate
8
honey
6
bee
6
mortality
5

Similar Publications

Climate effects on honey bees can be mitigated by beekeeping management in Kenya.

J Environ Manage

January 2025

Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France; International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya. Electronic address:

In recent decades, worldwide concerns about the health of honey bees motivated the development of surveys to monitor the colony losses, of which Sub-Saharan Africa has had limited representation. In the context of climate change, understanding how climate affects colony losses has become fundamental, yet literature on this subject is scarce. For the first time, we conducted a survey to estimate the livestock decrease of honey bee colonies in Kenya for the year 2021-2022 to explore the effects of environmental conditions, such as temperature and precipitation, on livestock decrease.

View Article and Find Full Text PDF

Cadmium (Cd), one of the toxic heavy metals, is of great importance for public health due to its use in many industrial areas. Propolis is a natural product with antioxidant and anti-inflammatory properties collected from plants by honey bees. The aim of this study was to investigate the protective role of propolis against the potential toxic effects of cadmium chloride in blood, liver and kidney tissues.

View Article and Find Full Text PDF

Molecular and functional characterization of Accl(2)efl: A biomarker for heavy metal stress in Apis cerana cerana.

Ecotoxicol Environ Saf

January 2025

Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China. Electronic address:

The expanded lethal (2) essential for life [l(2)efl] gene family is responsive to proteostatic stresses. Their protein products are core components of the stress response mechanism and are emerging as promising biomarkers for cellular stress in Apis mellifera. However, l(2)efl (LOC410857) uniquely remains unresponsive to heat stress within this gene family, and research examining its role in adaptation to other types of stress across diverse bee species is scarce.

View Article and Find Full Text PDF

Phylogenetic characterization of Bifidobacterium kimbladii sp. nov., a novel species from the honey stomach of the honeybee Apis mellifera.

Syst Appl Microbiol

January 2025

Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden.

Six novel Bifidobacterium strains H1HS16N, Bin2N, Hma3N, H6bp22N, H1HS10N, and H6bp9N, were isolated from the honey stomach of Apis mellifera. Cells are Gram-positive, non-motile, non-sporulating, facultatively anaerobic, and fructose 6-phosphate phosphoketolase-positive. Optimal growth conditions occur at 37 °C in anaerobiosis in MRS medium added with 2 % fructose and 0.

View Article and Find Full Text PDF

Supporting wild bee development with a bacterial symbiont.

J Appl Microbiol

January 2025

Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.

Aims: Wild bees foster diverse microbiota that may determine survival success of developing larvae. Here, we compare survivorship and microbial communities of Ceratina calcarata small carpenter bees reared from eggs across three treatments: maternally collected control provisions with diverse microbiota, sterile provisions, and probiotic provisions supplemented with a beneficial symbiont, Apilactobacillus kunkeei.

Methods And Results: Survival probability and adult masses differed across treatments, with the probiotic treatment resulting in highest survivorship and masses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!