Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Frizzled2 (Fzd2) is a receptor for wingless-type MMTV integration site family members (Wnts), the aberrant overexpression of which has been noted to contribute to cancer metastasis. The present study was performed to characterize the role of Fzd2 in the migration and invasion of oral squamous cell carcinomas (OSCC) in vitro. Using TSCCa cells (a tongue SCC cell line) for loss- or gain-of-function of Fzd2, we found that a forced overexpression of Fzd2 promoted TSCCa cell migration and invasion, decreased the expression of epithelial‑cadherin (E-cadherin, an epithelial marker) and increased that of vimentin, Snail Slug, matrix metalloproteinases (MMPs)-2/-9/-13 and a-disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS5). By contrast, RNA interference (RNAi)-mediated knockdown of Fzd2 had opposite effects on OSCC cells. In addition, we found that the phosphorylation of signal transducer and activator of transcription-3 (STAT3) was enhanced by Fzd2 overexpression, but suppressed by Fzd2 depletion, and that STAT3‑specific shRNA attenuated Fzd2 overexpression‑induced cell invasion. In summary, the present study demonstrated that Fzd2 contributes to the migration and invasion of OSCC cells, at least partly through regulation of the STAT3 pathway. These results suggest Fzd2 as a novel therapeutic target for OSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2015.4285 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!