Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
2-Indolcarbohydrazones 1-28 were synthesized and evaluated for their α-glucosidase inhibitory potential. A varying degree of inhibitory potential with IC50 values in the range of 2.3±0.11-226.4±6.8μM was observed while comparing these outcomes with the standard acarbose (IC50=906.0±6.3μM). The stereochemistry of ten (10) randomly selected compounds (1, 3, 6, 8, 12, 18, 19, 23, 25 and 28) was predicted by Density Functional Theory (DFT). The stability of E isomer was deduced by comparing the calculated and experimental vibration modes of νCO, νNC and νCH (CH in NCH-R). It was observed that except compound 18, all other compounds were deduced to have E configuration while molecular modeling studies revealed the key interactions between enzyme and synthesized compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2015.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!