Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein.

Biochemistry

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , San Francisco, California 94158, United States.

Published: October 2015

Leave-one-out green fluorescent protein (LOOn-GFP) is a circularly permuted and truncated GFP lacking the nth β-strand element. LOO7-GFP derived from the wild-type sequence (LOO7-WT) folds and reconstitutes fluorescence upon addition of β-strand 7 (S7) as an exogenous peptide. Computational protein design may be used to modify the sequence of LOO7-GFP to fit a different peptide sequence, while retaining the reconstitution activity. Here we present a computationally designed leave-one-out GFP in which wild-type strand 7 has been replaced by a 12-residue peptide (HA) from the H5 antigenic region of the Thailand strain of H5N1 influenza virus hemagglutinin. The DEEdesign software was used to generate a sequence library with mutations at 13 positions around the peptide, coding for approximately 3 × 10(5) sequence combinations. The library was coexpressed with the HA peptide in E. coli and colonies were screened for in vivo fluorescence. Glowing colonies were sequenced, and one (LOO7-HA4) with 7 mutations was purified and characterized. LOO7-HA4 folds, fluoresces in vivo and in vitro, and binds HA. However, binding results in a decrease in fluorescence instead of the expected increase, caused by the peptide-induced dissociation of a novel, glowing oligomeric complex instead of the reconstitution of the native structure. Efforts to improve binding and recover reconstitution using in vitro evolution produced colonies that glowed brighter and matured faster. Two of these were characterized. One lost all affinity for the HA peptide but glowed more brightly in the unbound oligomeric state. The other increased in affinity to the HA peptide but still did not reconstitute the fully folded state. Despite failing to fold completely, peptide binding by computational design was observed and was improved by directed evolution. The ratio of HA to S7 binding increased from 0.0 for the wild-type sequence (no binding) to 0.01 after computational design (weak binding) and to 0.48 (comparable binding) after in vitro evolution. The novel oligomeric state is composed of an open barrel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939794PMC
http://dx.doi.org/10.1021/acs.biochem.5b00786DOI Listing

Publication Analysis

Top Keywords

computationally designed
8
leave-one-out green
8
green fluorescent
8
fluorescent protein
8
wild-type sequence
8
peptide
8
vitro evolution
8
affinity peptide
8
oligomeric state
8
computational design
8

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Introduction: During tasks like minimally invasive surgery (MIS), various factors can make working environment not be ergonomic, and those situations will accumulate fatigue in the surgeon's muscles which will inevitably lead to poor surgical performance. Therefore, there has been a need for technical solutions to solve this problem and one of the methods is exoskeleton robots.

Methods: We designed a passive shoulder exoskeleton whose workspace could be used for MIS to assist the surgeon's movements and performed computational and clinical validation.

View Article and Find Full Text PDF

Background And Objective: Accurate extraction of retinal vascular components is vital in diagnosing and treating retinal diseases. Achieving precise segmentation of retinal blood vessels is challenging due to their complex structure and overlapping vessels with other anatomical features. Existing deep neural networks often suffer from false positives at vessel branches or missing fragile vessel patterns.

View Article and Find Full Text PDF

Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation.

J Chem Inf Model

December 2024

Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.

Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.

View Article and Find Full Text PDF

In silico trials for drug safety assessment require many high-fidelity 3D cardiac simulations to predict drug-induced QT interval prolongation, which is often computationally prohibitive. To streamline this process, we developed sex-specific emulators for a fast prediction of QT interval, trained on a dataset of 900 simulations. Our results show significant differences between 3D and 0D single-cell models as risk levels increase, underscoring the ability of 3D modeling to capture more complex cardiac responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!