The effects of halogen-light-irradiated and non-irradiated PAHs on the grouper Epinephelus marginatus were assessed through biomarkers including morphometric parameters, liver histopathology, biliary PAH concentration, genetic alterations, and enzyme activity modulation. E. marginatus juveniles were divided into three groups: control (C), non-irradiated PAHs (PAHs1), and irradiated PAHs (PAHs2). Test groups were exposed for 14 days to a 0.5 ppm PAH solution in the semi-static system. After this period, fish were anesthetized with benzocaine (2%) and peripheric blood was collected by caudal puncture. Blood smears were prepared and stained with propidium iodide. Fish livers were collected, fixed in McDowell's solution, embedded in paraplast, thin-sectioned, and stained with hematoxylin-eosin (H&E). For biochemical analyses including superoxide dismutase, catalase, and glutathione S-transferase activities, fish livers were collected and preserved in liquid nitrogen. Water samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and bile synchronous fluorescence spectroscopy. Fish in the PAHs2 group had micronuclei (MN) in blood cells, as well as significant differences in nuclear morphology (NMA). Significant morphological alterations were observed in the livers from fish exposed to PAHs as well as inhibition of the catalase activity. Our results show that irradiation altered the bioavailability of PAHs, especially benzanthracene, which has great impact in aquatic ecosystems. Among the consequences of physical and chemical changes to PAHs, we observed a significant increase in NMA and MN incidence in E. marginatus erythrocytes, indicating the potential initiation of mutagenic and carcinogenic processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2015.09.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!