Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p < 0.0001). Both the field campaigns and the laboratory contamination experiment revealed that CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2015.09.027 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
As emerging pollutants, bisphenol A (BPA), tetrabromobisphenol A (TBBPA) and its analogs have become widespread in the coastal environment of China. To investigate the occurrence of these novel contaminants in Chinese marginal sea, 176 seawater and 88 sediment samples were collected from the Yellow Sea and East China Sea. In seawater and sediment, the detection rates of TBBPA are 83.
View Article and Find Full Text PDFChemosphere
January 2025
Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland. Electronic address:
High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C-C) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka. Electronic address:
The microbial pollution status of river surface water is important to ensure a river-based quality drinking water supply for the public. The present study aimed to investigate bacterial contamination status in the upper Mahaweli River, the main drinking water supplier to the hill country of Sri Lanka. Both the raw surface water and treated water, taken at 14 drinking water treatment plants (DWTPs) along the river segment of 60 km between Kotmale and Victoria reservoirs, were tested for total bacterial counts (TBC), total coliform counts (TCC) and faecal coliform counts (FCC).
View Article and Find Full Text PDFJ Water Health
December 2024
Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh.
is a pathogenic bacterium widely distributed in the environment, with increasing concerns about multidrug-resistant (MDR) strains in riverine systems. In this study, we assessed the antibiotic resistance of 50 isolates from surface water samples collected at seven distinct sites along the Buriganga River. Antibiotic sensitivity was tested using the Kirby-Bauer Disk Diffusion method.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China. Electronic address:
As a byproduct of shale gas extraction, flowback water (FW) is produced in large quantities globally. Due to the unique interactions between pollutants and microorganisms, FW always harbor multiple antibiotic resistance genes (ARGs) that have been confirmed in our previous findings, potentially serving as a point source for ARGs released into the environment. However, whether ARGs in FW can disseminate or integrate into the environmental resistome remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!