The aim of this study was to evaluate procalcitonin (PCT), C-reactive protein (CRP), platelet count (PLT) and serum lactate dehydrogenase (LDH) as early markers for diagnosis of SIRS, bacterial sepsis and systemic candidiasis in intensive care unit (ICU) patients. Based on blood culture results, the patients were divided into a sepsis group (70 patients), a SIRS group (42 patients) and a systemic candidiasis group (33 patients). PCT, CRP, LDH and PLT levels were measured on day 0 and on day 2 from the sepsis symptom onset. PCT levels were higher in Gram negative sepsis than those in Gram positive sepsis, although the P value between the two subgroups is not significant (P=0.095). Bacterial sepsis group had higher PCT and CRP levels compared with the systemic candidiasis group, whereas PLT and LDH levels showed similar levels in these two subgroups. The AUC for PCT (AUC: 0.892, P <0.001) was larger than for CRP (AUC: 0.738, P <0.001). The best cut-off values for PCT and CRP were 0.99 ng/mL and 76.2 mg/L, respectively. Diagnostic sensitivity and specificity for PCT were 84.3% and 81.8% whereas CRP showed a sensitivity of 77.2% and a specificity of 63.6%. However, PCT was unable to discriminate between SIRS and systemic candidiasis groups (P=0.093 N.S.). In conclusion, PCT can be used as a preliminary marker in the event of clinical suspicion of systemic candidiasis; however, low PCT levels (<0.99 ng/mL) necessarily require the use of other specific markers of candidaemia to confirm the diagnosis, due to great uniformity of PCT levels in systemic candidiasis and SIRS groups.

Download full-text PDF

Source

Publication Analysis

Top Keywords

systemic candidiasis
16
bacterial sepsis
12
group patients
12
c-reactive protein
8
serum lactate
8
lactate dehydrogenase
8
sepsis group
8
candidiasis group
8
pct crp
8
sepsis
7

Similar Publications

Chemoproteomic Profiling of for Characterization of Anti-fungal Kinase Inhibitors.

bioRxiv

January 2025

Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

is a growing health concern as the leading causal agent of systemic candidiasis, a life-threatening fungal infection with a mortality rate of ~40% despite best available therapy. Yck2, a fungal casein kinase 1 (CK1) family member, is the cellular target of inhibitors YK-I-02 (YK) and MN-I-157 (MN). Here, multiplexed inhibitor beads paired with mass spectrometry (MIB/MS) employing ATP-competitive kinase inhibitors were used to define the selectivity of these Yck2 inhibitors across the global proteome.

View Article and Find Full Text PDF

Today, is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of .

View Article and Find Full Text PDF

An alteration in the expression of cell wall structural proteins increases cell surface exposure of adhesins to promote virulence in .

mSphere

December 2024

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

is an opportunistic human fungal pathogen that causes superficial mucosal and life-threatening bloodstream infections in immunocompromised individuals. Remodeling in cell wall components has been extensively exploited by fungal pathogens to adapt to host-derived stresses, as well as immune evasion. How this process contributes to pathogenicity is less understood.

View Article and Find Full Text PDF

Candida albicans is the most common aetiologic pathogen of fungal infections associated with high mortality in immunocompromised patients. There is an urgent need to develop new antifungal therapies owing to the poor efficacy and resistance of current antifungals. Here, we report that Trim72 positively regulates antifungal immunity during lethal fungal infection.

View Article and Find Full Text PDF

Antimicrobial peptide AMP-17 induces protection against systemic candidiasis and interacts synergistically with fluconazole against biofilm.

Front Microbiol

November 2024

School of Basic Medical Sciences, Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang, China.

Article Synopsis
  • Candidiasis is a serious fungal infection that can become life-threatening, and drug-resistant strains are on the rise, highlighting the need for new treatments.
  • AMP-17, an antimicrobial peptide, has shown promising antifungal effects and can enhance the effectiveness of fluconazole, a common antifungal drug, in treating systemic candidiasis.
  • In tests on infected larvae and mice, AMP-17 significantly improved survival rates, reduced fungal loads, and minimized inflammation, suggesting it could be a novel treatment option for candidiasis, especially when used alongside fluconazole.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!