Friend erythroleukemia cells (FLC) selected by exposure to Adriamycin (doxorubicin) express an approximate 2.5-fold (ARN1) or 13-fold (ARN2) resistance to the drug with various degrees of cross-resistance to other anthracyclines, vinca alkaloids, and epipodophyllotoxins. Because the redox cycling of the quinone moiety of Adriamycin is known to produce oxidative stress, however, an analysis of glutathione (GSH) and related enzyme systems was undertaken in the wild-type and selected resistant cells. In ARN1 and ARN2, superoxide dismutase (SOD) and catalase activities were slightly decreased, intracellular GSH and GSH reductase were essentially unchanged, and total GSH peroxidase, glutathione S-transferase (GST), and DT-diaphorase activities were slightly elevated. In each case there was no stoichiometric relationship between degree of resistance and level of activity. GST isozymes were purified from each cell line by HPLC GSH affinity column chromatography. Two-dimensional gel electrophoresis and western blot immunoreactivity against a battery of GST isozyme polyclonal antibodies determined that both the resistant and sensitive cells expressed isozymes of the alpha, pi, and mu classes (alternative murine nomenclature: M1, M2, M3). Of significance, both ARN1 and ARN2 cell lines expressed a unique alpha subunit which was absent from the parent FLC cell line. This isozyme presumably accounted for the increased GSH peroxidase activity (cumene hydroperoxide as substrate) found in ARN1 and ARN2 and may play a role in the small incremental resistance to melphalan found for both resistant lines. Expression of the isozyme was not stoichiometric with respect to degree of resistance. The presence of this isozyme may contribute to the resistant phenotype or may be the consequence of a more general cellular response to oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/095535489820875291 | DOI Listing |
BMC Genomics
December 2013
IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais, 1049-001, Lisboa, Portugal.
Background: The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S.
View Article and Find Full Text PDFJ Microbiol Biotechnol
February 2012
Department of Biomaterial Control (BK 21 program), Dong-Eui University, Busan 614-714, Korea.
We sought to breed an industrially useful yeast strain, specifically an ethanol-tolerant yeast strain that would be optimal for ethanol production, using a novel breeding method, called genome reconstruction, based on chromosome splitting technology. To induce genome reconstruction, Saccharomyces cerevisiae strain SH6310, which contains 31 chromosomes including 12 artificial mini-chromosomes, was continuously cultivated in YPD medium containing 6% to 10% ethanol for 33 days. The 12 mini-chromosomes can be randomly or specifically lost because they do not contain any genes that are essential under high-level ethanol conditions.
View Article and Find Full Text PDFCurr Genet
September 2007
School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea.
The separation and identification of siderophores produced by microorganisms is a time-consuming and an expensive procedure. We have developed a new and efficient method to identify siderophores using well-established Saccharomyces cerevisiae deletion mutants. The Deltafet3,arn strains fail to sustain growth, even when specific siderophores are supplied, and mutants are siderophore-specific: Deltafet3,arn2 for triacetylfusarinine C (TAFC), Deltafet3,arn1,sit1 for ferrichrome (FC), and Deltafet3,sit1 for ferrioxamine B (FOB).
View Article and Find Full Text PDFFEMS Yeast Res
September 2006
National Research Institute of Brewing, Kagamiyama, Higashi-Hiroshima, Japan.
Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae.
View Article and Find Full Text PDFBiochem Soc Trans
August 2002
Liver Diseases Section, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Building 10, Room 9B-16, 10 Center Drive, Bethesda, MD 20892-1800, USA.
The budding yeast Saccharomyces cerevisiae responds to growth in limiting amounts of iron by activating the transcription factor Aft1p and expressing a set of genes that ameliorate the effects of iron deprivation. Analysis of iron-regulated gene expression using cDNA microarrays has revealed the set of genes controlled by iron and Aft1p. Many of these genes are involved in the uptake of siderophore-bound iron from the environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!