Removal of bisphenol A and some heavy metal ions by polydivinylbenzene magnetic latex particles.

Environ Sci Pollut Res Int

University of Lyon 1, Villeurbanne, CNRS, UMR 5007, LAGEP-CPE-308G, University of Lyon, 43 bd. 11 Nov.1918, 69622, Villeurbanne, France.

Published: August 2016

In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5-5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π-π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-5407-5DOI Listing

Publication Analysis

Top Keywords

bpa cuii
12
cuii pbii
12
pbii znii
12
removal bisphenol
8
latex particles
8
adsorption
8
adsorption bpa
8
adsorption capacity
8
bpa
6
bisphenol heavy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!