Purinergic signaling may be involved in embryonic development of the heart. In the present study, the effects of purinergic receptor stimulation on cardiomyogenesis of mouse embryonic stem (ES) cells were investigated. ADP or ATP increased the number of cardiac clusters and cardiac cells, as well as beating frequency. Cardiac-specific genes showed enhanced expression of α-MHC, MLC2v, α-actinin, connexin 45 (Cx45), and HCN4, on both gene and protein levels upon ADP/ATP treatment, indicating increased cardiomyogenesis and pacemaker cell differentiation. Real-time RT-PCR analysis of purinergic receptor expression demonstrated presence of P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y4, and P2Y6 on differentiating ES cells. ATP and ADP as well as the P2X agonists β,γ-methylenadenosine 5'-triphosphate (β,γ-MetATP) and 8-bromoadenosine 5'-triphosphate (8-Br-ATP) but not UTP or UDP transiently increased the intracellular calcium concentration ([Ca(2+)](i)) as evaluated by the calcium indicator Fluo-4, whereas no changes in membrane potential were observed. [Ca(2+)](i) transients induced by ADP/ATP were abolished by the phospholipase C-β (PLC-β) inhibitor U-73122, suggesting involvement of metabotropic P2Y receptors. Furthermore, partial inhibition of [Ca(2+)](i) transients was achieved in presence of MRS2179, a selective P2Y1 receptor antagonist, whereas PPADS, a non-selective P2 receptor inhibitor, completely abolished the [Ca(2+)](i) response. Consequently, cardiomyocyte differentiation was decreased upon long term co-incubation of cells with ADP and P2 receptor antagonists. In summary, activation of purinoceptors and the subsequent [Ca(2+)](i) transients enhance the differentiation of ES cells toward cardiomyocytes. Purinergic receptor stimulation may be a promising strategy to drive the fate of pluripotent ES cells into a particular population of cardiomyocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648792PMC
http://dx.doi.org/10.1007/s11302-015-9468-1DOI Listing

Publication Analysis

Top Keywords

purinergic receptor
16
[ca2+]i transients
12
embryonic stem
8
stem cells
8
adp atp
8
receptor stimulation
8
cells
7
receptor
7
purinergic
5
[ca2+]i
5

Similar Publications

Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.

View Article and Find Full Text PDF

Signal transduction downstream of activating stimuli controls CD8+ T cell biology, however these external inputs can become uncoupled from transcriptional regulation in Primary Immune Regulatory Disorders (PIRDs). Gain-of-function (GOF) variants in STAT3 amplify cytokine signaling and cause a severe PIRD characterized by early onset autoimmunity, lymphoproliferation, recurrent infections, and immune dysregulation. In both primary human and mouse models of STAT3 GOF, CD8+ T cells have been implicated as pathogenic drivers of autoimmunity.

View Article and Find Full Text PDF

Non-ionotropic NMDAR signalling activates Panx1 to induce P2X4R-dependent long-term depression in the hippocampus.

J Physiol

December 2024

Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

In recent years, evidence supporting non-ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long-term depression (LTD). Here, we investigated whether niNMDAR-pannexin-1 (Panx1) contributes to LTD at the CA3-CA1 hippocampal synapse. Using whole-cell, patch clamp electrophysiology in rat hippocampal slices, we show that a low-frequency stimulation (3 Hz) of the Schaffer collaterals produces LTD that is blocked by continuous but not transient application of the NMDAR competitive antagonist, MK-801.

View Article and Find Full Text PDF

Aims: To answer the question of whether the bladder itself can to any extent control or modulate the initiation of voiding.

Methods: This subject was discussed at the International Consultation on Incontinence-Research Society (ICI-RS) 2024 conference in Bristol, UK in a proposal session.

Results: Cells in the bladder wall sense the local environment via a diverse array of ion channels and receptors which together provide input to motor-sensory and signal transduction mechanisms.

View Article and Find Full Text PDF

Perioperative neurocognitive disorder (PND) is a common complication in the perioperative period, which not only prolongs the hospitalization of patients, increases the cost of treatment, but even increases the postoperative mortality of patients, bringing a heavy burden to families and society. Mechanism exploration involves anesthesia and surgery that lead to microglial activation, promote the synthesis and secretion of inflammatory factors, cause an inflammatory cascade, aggravate nerve cell damage, and lead to cognitive dysfunction. It is believed that microglia-mediated neuroinflammatory responses play a vital role in the formation of PND.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!