Rationale: Ionic liquids ([Cat(+)][An(-)]) were believed to decompose before reaching vaporization temperatures, but recently some of them have been shown to vaporize congruently. Low-temperature vaporization of ionic substances is an intriguing phenomenon, so the vapor-phase composition and reactions of ionic liquids deserve more extensive study.

Methods: Evaporation of two ionic liquids, [C2MIM(+)][Tf2 N(-)] and [C3MMIM(+)][Tf2N(-)], was studied by means of Knudsen effusion mass spectrometry. These liquids were also characterized using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, UV/Vis, IR, NMR spectroscopy, and elemental analysis.

Results: The vaporization enthalpies of (118 ± 3) and (124 ± 2) kJ·mol(-1) were determined for [C2MIM(+)][Tf2N(-)] and [C3MMIM(+)][Tf2N(-)], respectively. The corresponding equations for their saturated vapor pressures are: ln(p{[C2MIM(+)][Tf2N(-)]}/Pa) = -(14213 ± 325)/(T/K) + (26.57 ± 1.04), ln(p{[C2MMIM(+)][Tf2N(-)]}/Pa) = -(14868 ± 221)/(T/K) + (27.19 ± 0.60). The MALDI studies (positive and negative ion modes) enabled detection of monomeric [Cat(+)] and [An(-)] ions, the cluster ions {[Cat(+)]2 [An(-)]}(+) and {[Cat(+)][An(-)]2}(-), and some complex anions {2[An(-)] + Na(+)}(-), {2[An(-)] + K(+)}(-), {2[An(-)] + Cu(+)}(-) and {3[An(-)] + Ca(2+)}(-).

Conclusions: Knudsen effusion mass spectrometry proved to be a valuable method to study the thermodynamics of ionic liquids. The saturated vapor pressure and vaporization enthalpy of [C3MMIM(+)][Tf2N(-)] were accurately determined for the first time. MALDI is also capable of providing indirect information on hydrogen bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7214DOI Listing

Publication Analysis

Top Keywords

ionic liquids
16
mass spectrometry
12
knudsen effusion
8
effusion mass
8
saturated vapor
8
ionic
5
liquids
5
mass
4
mass spectrometric
4
spectrometric studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!