Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585813PMC
http://dx.doi.org/10.1038/srep14353DOI Listing

Publication Analysis

Top Keywords

solar cells
16
chemical bath
8
conversion efficiency
8
pbs thin
8
cbd process
8
gap pbs
8
pbs
6
solar
5
band-aligned double
4
double absorber
4

Similar Publications

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Evolution of Two-Dimensional Perovskite Films Under Atmospheric Exposure and Its Impact on Photovoltaic Performance.

ACS Appl Mater Interfaces

January 2025

Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

Two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) have garnered significant attention due to their enhanced stability compared with their three-dimensional counterparts. However, the power conversion efficiency (PCE) of 2D perovskite solar cells (2D-PSCs) remains lower than that of 3D-PSCs. Understanding the microstructural evolution of 2D perovskite films during fabrication is essential for improving their performance.

View Article and Find Full Text PDF

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF

Recent advances in the development of enantiopure BODIPYs and some related enantiomeric compounds.

Chem Commun (Camb)

January 2025

Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.

Article Synopsis
  • Small chiral organic dyes, especially chiral variants of boron dipyrromethene (BODIPY), are important for developing advanced smart chiroptical luminophores due to their outstanding photophysical properties.
  • Recent research has focused on inducing chirality in achiral BODIPY by creating chiral centers at various positions, enhancing synthetic accessibility.
  • The developments in chiral BODIPY have potential applications in fields such as photodynamic therapy, bio-imaging, optoelectronics, and more.
View Article and Find Full Text PDF

Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!