High-throughput analysis of animal behavior requires software to analyze videos. Such software analyzes each frame individually, detecting animals' body parts. But the image analysis rarely attempts to recognize "behavioral states"-e.g., actions or facial expressions-directly from the image instead of using the detected body parts. Here, we show that convolutional neural networks (CNNs)-a machine learning approach that recently became the leading technique for object recognition, human pose estimation, and human action recognition-were able to recognize directly from images whether Drosophila were "on" (standing or walking) or "off" (not in physical contact with) egg-laying substrates for each frame of our videos. We used multiple nets and image transformations to optimize accuracy for our classification task, achieving a surprisingly low error rate of just 0.072%. Classifying one of our 8 h videos took less than 3 h using a fast GPU. The approach enabled uncovering a novel egg-laying-induced behavior modification in Drosophila. Furthermore, it should be readily applicable to other behavior analysis tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585819PMC
http://dx.doi.org/10.1038/srep14351DOI Listing

Publication Analysis

Top Keywords

animal behavior
8
convolutional neural
8
neural networks
8
body parts
8
analyzing animal
4
behavior
4
behavior classifying
4
classifying video
4
video frame
4
frame convolutional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!