A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001-2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579079 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136154 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!