Aims: The main objective of this study was to investigate the antifungal effect of Solanum torvum leaves against different field and storage fungi, and to identify its active compound. In addition, to evaluate in vitro and in vivo inhibitory efficacy on toxigenic strains of Aspergillus flavus and Fusarium verticillioides.
Methods And Results: Leaves of S. torvum were sequentially extracted with petroleum ether, toluene, chloroform, methanol and ethanol. The antifungal compound isolated from chloroform extract was identified as torvoside K based on spectral analysis. The antifungal activity of chloroform extract and torvoside K was determined by broth microdilution and poisoned food techniques. The minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and zone of inhibition (ZOI) were recorded. Further, inhibitory effects of chloroform extract and torvoside K on growth of A. flavus and F. verticillioides, and their toxin productions were evaluated using in vitro and in vivo assays. Torvoside K showed the significant activity against tested fungi with ZOIs and MICs ranging from 33·4 to 87·4% and 31·25-250 μg ml(-1) , respectively. Further, torvoside K showed concentration-dependent antimycotoxigenic activity against aflatoxin B1 and fumonisin B1 production by A. flavus and F. verticillioides, respectively.
Conclusions: It was observed that the compound torvoside K significantly inhibited the growth of all fungi tested. Growth of A. flavus and F. verticillioides, and aflatoxin B1 and fumonisin B1 productions were completely inhibited in vitro and in vivo by torvoside K with increasing concentration.
Significance And Impact Of The Study: Control of mycotoxigenic fungi requires compounds that able to inhibit both fungal growth and mycotoxin production. The antimycotoxigenic potential of torvoside K of S. torvum is described in this study for the first time. The results indicate the possible use of S. torvum as source of antifungal agents against postharvest fungal infestation of food commodities and mycotoxin contaminations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.12956 | DOI Listing |
Molecules
January 2023
Laboratory of Fundamental Sciences, University Amar Télidji of Laghouat, Road of Ghardaïa, Laghouat 03000, Algeria.
in folk medicine is used by Algerian traditional healers for treating a wide variety of diseases and conditions including dyspepsia, digestive problems, peptic ulcers, and, in particular, inflammatory diseases. The present study aimed to assess the phytochemical composition, in vitro antioxidant activity (using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS+, and reducing power methods), enzyme inhibitory activity (towards α-amylase and urease), antibacterial activity, and in vivo anti-inflammatory activity of the unripe fruit extracts of collected from different parts of the Djelfa region of Algeria. According to the findings, various aqueous extracts exhibited significant antioxidant and enzymatic activities in all tests, but showed that they have a weak inhibitory effect against all tested bacterial strains.
View Article and Find Full Text PDFMolecules
December 2021
Chemistry Department, University of Hamma Lakhdar El-Oued, B.P.789, El-Oued 39000, Algeria.
Our study evaluated the in vitro antioxidant properties, antibacterial and antifungal activities, anti-inflammatory properties, and chemical composition of the essential oils (EOs), total phenol, and total flavonoid of wild L. This study also determined the mineral (nutritional and toxic) elements in the plant. The EOs were extracted using three techniques-hydro distillation (HD), steam distillation (SD), and microwave-assisted distillation (MAD)-and were analyzed using chromatography coupled with flame ionization (GC-FID) and gas chromatography attached with mass spectrometry detector (GC-MS).
View Article and Find Full Text PDFInt J Nanomedicine
June 2020
Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
J Comp Neurol
December 2016
Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
α-Internexin is a member of the neuronal intermediate filament (nIF) protein family, which also includes peripherin and neurofilament (NF) triplet proteins. Previous studies found that expression of α-internexin precedes that of the NF triplet proteins in mammals and suggested that α-internexin plays a key role in the neuronal cytoskeleton network during development. In this study, we aimed to analyze the expression patterns and function of internexin neuronal intermediate filament protein-alpha a (inaa), the encoding gene of which is a homolog of the mammalian α-internexin, during retinal development in zebrafish.
View Article and Find Full Text PDFScientificWorldJournal
November 2004
Department of Materials Science and Technology, University of Ioannina, 45110 Ioannina, Greece.
An approach to the problem of bone disorders is the measurement of the skeleton''s static and dynamic strength, an estimate of which is bone mineral density. A decrease in the latter may be due to a decrease in either Ca or P, or to dissimilar decreases in both. Consequently, the determination of the Ca/P ratio may provide a sensitive measure of bone mineral changes and may add to our understanding of the changes occurring in bone diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!