The aim of this study was to investigate the species Symphonia globulifera, a source of polycyclic polyprenylated acyl phloroglucinols such as guttiferone A, which is known to exhibit a variety of biological activities including noticeable antileishmanial properties. Our goal was the identification and the quantification of guttiferone A in different renewable parts of S. globulifera and its preparative isolation. To the best of our knowledge, there is no data concerning its mechanism of action. Consequently, it is particularly interesting to isolate it in gram quantities in order to establish structure activity relationship studies. After performing high-performance liquid chromatography profiles detecting the presence of guttiferone A and proceeding to its quantification, a centrifugal partition chromatography methodology using a two-phase solvent system of cyclohexane/ethyl acetate/methanol/water (20 :  1 :  20 : 1, v/v/v/v) was applied to each extract. In conclusion, a centrifugal partition chromatography system has been developed to ensure a fast, reliable, and scalable way to isolate, with a high level of purity, guttiferone A from five renewable parts of S. globulifera. Moreover, this methodology can be extended to the isolation of other polycyclic polyprenylated acyl phloroglucinols such as guttiferones B, C, and D.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0035-1557773DOI Listing

Publication Analysis

Top Keywords

renewable parts
12
centrifugal partition
12
partition chromatography
12
symphonia globulifera
8
polycyclic polyprenylated
8
polyprenylated acyl
8
acyl phloroglucinols
8
guttiferone renewable
8
parts globulifera
8
isolation guttiferones
4

Similar Publications

Predecting power transformer health index and life expectation based on digital twins and multitask LSTM-GRU model.

Sci Rep

January 2025

Department of Embedded Network Systems and Technology, Faculty of Artificial Intelligence, Kafrelsheikh University, El-Geish St, Kafrelsheikh, 33516, Egypt.

Power transformers play a crucial role in enabling the integration of renewable energy sources and improving the overall efficiency and reliability of smart grid systems. They facilitate the conversion, transmission, and distribution of power from various sources and help to balance the load between different parts of the grid. The Transformer Health Index (THI) is one of the most important indicators of ensuring their reliability and preventing unplanned outages.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring renewable energy sources like solar cell technology to replace fossil fuels and reduce environmental impacts, focusing on lead-free halide perovskite compounds CsXInBr (where X is Cu or Ag).
  • The study found that CsAgInBr and CsCuInBr compounds exhibit desirable properties for solar applications, with calculated optical gaps and high absorption coefficients, particularly noting CsCuInBr's effectiveness in absorbing sunlight due to its high infrared absorption.
  • The analysis utilized the Abinit computational package and density functional theory (DFT) to evaluate the electronic, structural, and optical characteristics of these compounds, framing potential applications in solar cells and detectors.
View Article and Find Full Text PDF

The gradual increment of renewable energy sources (RES) integration in the power generation system is involved in achieving the maximum power demand in the world. In RES fuel cells are used for storage systems of energy. The increment and decrement of voltage level can be controlled by the different types of converters as per the application.

View Article and Find Full Text PDF

This study assessed the phytoremediation potential of grown in Oxisol contaminated with varying zinc concentrations. was cultivated in soil with Zn levels from 0 to 1920 mg kg. Growth parameters, Zn concentrations in plant parts, bioaccumulation, and translocation factors were measured.

View Article and Find Full Text PDF

In the realm of wearable technology, strategically placing sensors at various body locations enhances the detection of diverse physiological indicators crucial for remote medical care. However, current devices often focus on a single body part for specific physical parameters, which hinders the seamless integration of sensors across multiple body parts and necessitates redesign for new detection capabilities. Here, we propose a modular, reconfigurable circuit assembly method that can be adaptable for multiple body locations to construct the body net.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!