We investigate the arrival statistics of Stokes (S) and anti-Stokes (aS) Raman photons generated in thin diamond crystals. Strong quantum correlations between the S and aS signals are observed, which implies that the two processes share the same phonon; that is, the phonon excited in the S process is consumed in the aS process. We show that the intensity cross-correlation g(S,aS)(2)(0), which describes the simultaneous detection of Stokes and anti-Stokes photons, increases steadily with decreasing laser power and saturates at very low pump powers, implying that the number of Stokes-induced aS photons is comparable to the number of spontaneously generated aS photons. Furthermore, the coincidence rate shows a quadratic plus cubic power dependence, indicating the generation of multiple S photons per pulse at high powers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.40.002393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!