In optical scanning holography (OSH), the coherence properties of the acquired holograms depend on the single-pixel size, i.e., the active area of the photodetector. For the first time, to the best of our knowledge, we have demonstrated coherent, partial coherent, and incoherent three-dimensional (3D) imaging by experiment in such a single-pixel digital holographic recording system. We have found, for the incoherent mode of OSH, in which the detector of the largest active area is applied, the 3D location of a diffusely reflecting object can be successfully retrieved without speckle noise. For the partial coherent mode employing a smaller pixel size of the detector, significant speckles and randomly distributed bright spots appear among the reconstructed images. For the coherent mode of OSH when the size of the pixel is vanishingly small, the bright spots disappear. However, the speckle remains and the signal-to-noise ratio is low.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.002366DOI Listing

Publication Analysis

Top Keywords

single-pixel digital
8
active area
8
partial coherent
8
mode osh
8
coherent mode
8
bright spots
8
coherence experiments
4
experiments single-pixel
4
digital holography
4
holography optical
4

Similar Publications

We demonstrate high-resolution single-pixel imaging (SPI) in the visible and near-infrared wavelength ranges using an SPI framework that incorporates a novel, dedicated sampling scheme and a reconstruction algorithm optimized for the rapid imaging of highly sparse scenes at the native digital micromirror device (DMD) resolution of 1024 × 768. The reconstruction algorithm consists of two stages. In the first stage, the vector of SPI measurements is multiplied by the generalized inverse of the measurement matrix.

View Article and Find Full Text PDF

Spinning coding masks, recognized for their fast modulation rate and cost-effectiveness, are now often used in real-time single-pixel imaging (SPI). However, in the photon-counting regime, they encounter difficulties in synchronization between the coding mask patterns and the photon detector, unlike digital micromirror devices. To address this issue, we propose a scheme that assumes a constant disk rotation speed throughout each cycle and models photon detection as a non-homogeneous Poisson process (NHPP).

View Article and Find Full Text PDF

Single-pixel imaging (SPI) is a novel imaging technique that applies to acquiring spatial information under low light, high absorption, and backscattering conditions. The existing reconstruction techniques, such as pattern analysis and signal-recovery algorithms, are inefficient due to their iterative behaviors and substantial computational requirements. In this paper, we address these issues by proposing a hybrid convolutional-transformer network for efficient and accurate SPI reconstruction.

View Article and Find Full Text PDF

Achieving high frame-rate operation in single pixel imaging schemes normally demands significant compromises in the flexibility of the imaging system, requiring either complex optical setups or a hardware-limited pattern mask set. Here, we demonstrate a single pixel imaging capability with pattern frame-rates approaching 400 kfps with a recently developed microLED light projector and an otherwise simple optical setup. The microLED array has individually addressable pixels and can operate significantly faster than digital micromirror devices, allowing flexibility with regards to the pattern masks employed for imaging even at the fastest frame-rates.

View Article and Find Full Text PDF

Background: Static nailfold capillary parameters are important parameters that reflect the health of the human body. Disease onset or progression is often accompanied by changes in the physiological parameters of the nailfold. Hence, the physiological parameters of the nailfold are closely related to the study of disease, with their automated and high-precision measurements playing a crucial role in these studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!