The acousto-optic lens (AOL) is becoming a popular tool in the neuroscience field. Here we analyzed the deformation of the diffraction beam after passage through an AOL consisting of a pair of acousto-optic deflectors using both theoretical and experimental data. The results showed that, because of the high sensitivity of optical spatial frequencies of acousto-optic deflectors, the boundary strength of the diffraction beam of the AOL decreases significantly. When the focal length of AOL diminishes, the deformation of the diffraction beam becomes more serious with a smaller beam size. This deformation of the diffraction beam finally leads to a decreased illuminative numerical aperture, which worsens the image's spatial resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.002197DOI Listing

Publication Analysis

Top Keywords

diffraction beam
16
deformation diffraction
12
acousto-optic lens
8
acousto-optic deflectors
8
beam
6
beam deformation
4
acousto-optic
4
deformation acousto-optic
4
lens acousto-optic
4
aol
4

Similar Publications

This paper explores a multi-directional (multiple directional) shearing synchronous polarization phase-shifting interferometer that utilizes a birefringent crystal displacer. This design effectively mitigates nonlinear issues and environmental influences commonly encountered in synchronous phase-shifting interferometry. Additionally, it enables the acquisition of shear wavefront information from multiple directions.

View Article and Find Full Text PDF

Auto-collimation diffraction of two-dimensional metal-dielectric grating with azimuth angle of 45°.

Nanophotonics

January 2025

College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.

Grating under auto-collimation configuration with polarization-independent high diffraction efficiency plays an important role in the displacement measurement system, spectral beam combining system and so on. In this paper, we proposed, for the first time, a reflective two-dimensional metal-dielectric grating of which the (-1, -1) order beam is diffracted back along the input light direction, when the incident azimuth angle is 45°. With optimized structure, the (-1, -1) order diffraction efficiencies of transverse electric polarization (TE) and transverse magnetic polarization (TM) are 95.

View Article and Find Full Text PDF

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

LiNbO domain structures have been widely applied in nonlinear beam shaping, quantum light generation, and nonvolatile ferroelectric memory. The recent developments in nanoscale domain engineering techniques make it possible to fabricate sub-diffracted nanodomains in LiNbO crystal for high-speed modulation and high-capacity storage. However, it still lacks a feasible and efficient way to characterize these nanoscale domains.

View Article and Find Full Text PDF

Single-shot ptychography is a quantitative phase imaging method wherein overlapping beams of light arranged in a grid pattern simultaneously illuminate a sample, allowing a full ptychographic dataset to be collected in a single shot. It is primarily used at optical wavelengths, but there is interest in using it for x-ray imaging. However, constraints imposed by x-ray optics have limited the resolution achievable to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!