Variants in BCL11A were previously associated with fetal hemoglobin (HbF) levels among Cameroonian sickle cell disease (SCD) patients, however explaining only ∼2% of the variance. In the same patients, we have investigated the relationship between HbF and two SNPs in a BCL11A erythroid-specific enhancer (N=626). Minor allele frequencies in rs7606173 and rs1427407 were 0.42 and 0.24, respectively. Both variants were significantly associated with HbF levels (p=3.11e-08 and p=6.04e-06, respectively) and explained 8% and 6.2% variations, respectively. These data have confirmed a stronger effect on HbF of genomic variations at the BCL11A erythroid-specific enhancer among patients with SCD in Cameroon, the first report on a West African population. The relevance of these findings is of prime importance because the disruption of this enhancer would alter BCL11A expression in erythroid precursors and thus HbF expression, while sparing the induced functional challenges of any alterations on the expression of this transcription factor in non-erythroid lineages, thus providing an attractive approach for new treatment strategies of SCD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615773 | PMC |
http://dx.doi.org/10.1089/omi.2015.0124 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
January 2025
Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .
View Article and Find Full Text PDFHemoglobin
May 2024
Dana-Farber Cancer Institute - Department of Medical Oncology, Boston, MA, USA.
Due to the significant morbidity and mortality of hemoglobinopathies, curative options have long been pursued. The overall goal of gene therapy is to modify a patient's own hematopoietic stem cells to overcome the deleterious effects of the underlying genetic defect by gene addition, gene editing, or gene silencing. Gene addition incorporates genes with superior function than the abnormal gene; gene editing takes advantage of molecular tools such as zinc finger proteins, Transcription Activator-Like Effector Nucleases and Clustered Regularly Interspaced Short Palindromic Repeats coupled with Cas9 proteins (CRISPR-Cas9) which allow for sequence-specific breaks in DNA that disrupt gene function; and gene silencing suppresses gene expression by interference with mRNA transcription/protein translation or epigenetic modification.
View Article and Find Full Text PDFAdv Exp Med Biol
July 2024
Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, αγ) to adult (HbA, αβ) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice.
View Article and Find Full Text PDFN Engl J Med
May 2024
From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome (F.L.); the Department of Pediatrics, Columbia University Irving Medical Center, New York-Presbyterian-Morgan Stanley Children's Hospital (M.B.), and the Department of Medicine, Division of Hematology-Oncology, Columbia University (M. Mapara) - both in New York; Sarah Cannon Pediatric Transplant and Cellular Therapy Program at Methodist Children's Hospital, San Antonio, TX (L.M., M.J.E.); the Hospital for Sick Children and the University of Toronto, Toronto (D.W.); Ann and Robert H. Lurie Children's Hospital of Chicago (R.I.L.) and the University of Illinois at Chicago (D.R.) - both in Chicago; Royal London Hospital, Barts Health NHS Trust, London (P.T.); Stanford University, Palo Alto (A.J.S.), and University of California San Francisco Benioff Children's Hospital, Oakland (M.C.W.) - both in California; the Biotherapy Department and Biotherapy Clinical Investigation Center (M.C.), Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris, Université Paris-Cité (M. de Montalembert), Paris; the University of Regensburg, Regensburg (S.C.), the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf (R.M.), and Gemeinschaftsklinikum Mittelrhein, Koblenz (S.L.) - all in Germany; Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels (L.D.); Boston University Chobanian and Avedisian School of Medicine (M.H.S.) and Vertex Pharmaceuticals (S.I., L.B., C.S., W.Z., F.X., W.E.H.), Boston, and CRISPR Therapeutics, Cambridge (P.K.M.) - all in Massachusetts; and the Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.A.G.).
N Engl J Med
May 2024
From IRCCS Ospedale Pediatrico Bambino Gesù (F.L., M.A.) and Catholic University of the Sacred Heart (F.L.), Rome, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (M.D.C.), and the Department of Health Sciences, Magna Graecia University, Catanzaro (M.A.) - all in Italy; University Children's Hospital Tübingen (R.H.), and the Cluster of Excellence iFIT (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies" and the German Cancer Consortium, Partner Site Tübingen, University of Tübingen (P.L.), Tübingen, the Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf (R.M.), and the University of Regensburg, Regensburg (S.C.) - all in Germany; the Hospital for Sick Children and University of Toronto, Toronto (D.W.), and BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.) - all in Canada; Imperial College Healthcare NHS Trust, St. Mary's Hospital (J.F.), and University College London Hospitals NHS Foundation Trust (B.C.) - both in London; Stanford University, Palo Alto, CA (A.J.S.); Children's Hospital of Philadelphia and Perlman School of Medicine, University of Pennsylvania, Philadelphia (J.L.K., S.G.); Herbert Irving Comprehensive Cancer Center, Columbia University (M.M.), and Joan and Sanford I. Weill Medical College of Cornell University (S.S.) - both in New York; Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago (R.I.L.); National and Kapodistrian University of Athens, Athens (A.K.); Vertex Pharmaceuticals, Boston (P.K., D.S., L.R., Y.B., C.S., L.Z., W.E.H.), and CRISPR Therapeutics, Cambridge (P.K.M.) - both in Massachusetts; and Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial, Nashville (H.F.).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!