Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or as alternative catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic studies have demonstrated that SWI/SNF complexes are required during cardiac development and also protect against cardiovascular disease and cancer. However, constitutive null mutants do not exhibit a cardiomyocyte phenotype and inducible conditional mutations in cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping functions of and in vascular endothelial cells and sought here to test if this overlapping function occurred in cardiomyocytes. double mutants died within 21 days of severe cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on histological and ultrastructural analyses. To determine the underlying defects, we performed nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of double-mutant mice, which lack both and in cardiomyocytes in an inducible manner, and two groups of controls. Metabolites contributing most significantly to the differences between double-mutant and control-group hearts were then determined using the variable importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations in fatty acid utilization or intake are perturbed in double mutants. Conversely, decreased glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF complexes in homeostasis and cardiovascular disease prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574504 | PMC |
http://dx.doi.org/10.1007/s11306-015-0786-7 | DOI Listing |
J Cell Mol Med
January 2025
Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
Bladder cancer originates from bladder tissues and is the ninth most common type of cancer worldwide. The SWI/SNF (SWItch/sucrose non- fermentable) complex plays a crucial role in regulating various biological processes, such as cell cycle control, DNA damage repair and transcription regulation. The purpose of this article is to examine the functional studies of the SWI/SNF complex in bladder cancer, highlighting new pathways for creating personalised treatment approaches for bladder cancer patients with mutations in the SWI/SNF complex.
View Article and Find Full Text PDFThe ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.
View Article and Find Full Text PDFBackground: Atypical teratoid rhabdoid tumor (ATRT) is the most common malignant brain tumor in infants, and more than 60% of children with ATRT die from their tumor. ATRT is associated with mutational inactivation/deletion of , a member of the SWI/SNF chromatin remodeling complex, suggesting that epigenetic events play a critical role in tumor development and progression. Moreover, disruption of SWI/SNF allows unopposed activity of epigenetic repressors, which contribute to tumorigenicity.
View Article and Find Full Text PDFThyroid
January 2025
Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
The 2022 World Health Organization classification introduced the term high-grade follicular cell-derived nonanaplastic thyroid carcinoma (HGFCTC) to define invasive/infiltrative nonanaplastic thyroid carcinoma with high-grade features, including poorly differentiated thyroid carcinoma and high-grade differentiated thyroid carcinoma. Our objectives were to compare clinicopathological characteristics, oncologic outcomes, and mutation profiles among HGFCTC subgroups to better inform prognostication and treatment. In this single-center, retrospective cohort study of 252 patients who had surgery for HGFCTC from 1986 to 2020, we categorized HGFCTC and its related entity, "encapsulated noninvasive neoplasms of follicular cells with high-grade features," into five subgroups: (A) encapsulated noninvasive, (B) encapsulated with capsular invasion only (minimally invasive), (C) encapsulated angioinvasive with focal vascular invasion (VI), (D) encapsulated angioinvasive with extensive VI, and (E) infiltrative tumors.
View Article and Find Full Text PDFClin Rev Allergy Immunol
December 2024
Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!