Purpose: Autosomal dominant nanophthalmos is an inherited eye disorder characterized by a structurally normal but smaller eye. Patients with nanophthalmos have high hyperopia (far-sightedness), a greater incidence of angle-closure glaucoma, and increased risk of surgical complications. In this study, the clinical features and the genetic basis of nanophthalmos were investigated in two large autosomal dominant nanophthalmos pedigrees.
Methods: Fourteen members of a Caucasian pedigree from the United States and 15 members of a pedigree from the Mariana Islands enrolled in a genetic study of nanophthalmos and contributed DNA samples. Twenty of 29 family members underwent eye examinations that included measurement of axial eye length and/or refractive error. The genetic basis of nanophthalmos in the pedigrees was studied with linkage analysis, whole exome sequencing, and candidate gene (i.e., TMEM98) sequencing to identify the nanophthalmos-causing gene.
Results: Nine members of the pedigree from the United States and 11 members of the pedigree from the Mariana Islands were diagnosed with nanophthalmos that is transmitted as an autosomal dominant trait. The patients with nanophthalmos had abnormally short axial eye lengths, which ranged from 15.9 to 18.4 mm. Linkage analysis of the nanophthalmos pedigree from the United States identified nine large regions of the genome (greater than 10 Mbp) that were coinherited with disease in this family. Genes within these "linked regions" were examined for disease-causing mutations using exome sequencing, and a His196Pro mutation was detected in the TMEM98 gene, which was recently reported to be a nanophthalmos gene. Sanger sequencing subsequently showed that all other members of this pedigree with nanophthalmos also carry the His196Pro TMEM98 mutation. Testing the Mariana Islands pedigree for TMEM98 mutations identified a 34 bp heterozygous deletion that spans the 3' end of exon 4 in all affected family members. Neither TMEM98 mutation was detected in public exome sequence databases.
Conclusions: A recent report identified a single TMEM98 missense mutation in a nanophthalmos pedigree. Our discovery of two additional TMEM98 mutations confirms the important role of the gene in the pathogenesis of autosomal dominant nanophthalmos.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556162 | PMC |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria. Electronic address:
Background: Variants in the UQCRC1 gene have been proposed to cause autosomal dominant Parkinson's disease with neuropathy. However, definitive confirmation of UQCRC1 as an authentic Parkinson's gene remains elusive, as follow-up studies have not yet provided conclusive evidence.
Methods: 382 Austrian Parkinson's patients, particularly selected for familial and/or early onset cases, were Exome sequenced.
Rev Alerg Mex
December 2024
Médica general, Facultad de Ciencias de la Salud, Universidad Militar Nueva Granada, Hospital Universitario Mayor Méderi, Colombia.
Background: Hereditary Angioedema is an autosomal dominant disorder caused by a lack or decrease in the function of the C1 inhibitor. It is a rare disease with low prevalence. Treatment focuses on symptom relief and short- and long-term prevention of acute attacks.
View Article and Find Full Text PDFKidney360
September 2024
Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland.
Alzheimers Dement
December 2024
Washington University School of Medicine, Saint Louis, MO, USA.
Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.
Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!