The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709354 | PMC |
http://dx.doi.org/10.1007/s13280-015-0698-9 | DOI Listing |
BMC Vet Res
December 2024
Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt.
Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.
Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.
J Mol Biol
December 2024
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA. Electronic address:
The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
December 2024
GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain; Biomedical Research Institute IBS-Granada. Avda. de Madrid, 15, 18012, Granada, Spain; Unidad de Patología Mamaria. Servicio de Cirugía General y Aparato Digestivo. Hospital Universitario San Cecilio. Granada; Integral Oncology Division, Virgen de las Nieves University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain; Molecular lab. Unit of Pathological Anatomy. University Hospital Virgen de las Nieves. 18016. Granada, Spain. Electronic address:
Lymph node metastasis (LNM) significantly affects the prognosis and clinical management of breast cancer (BC) patients. This systematic review and meta-analysis aim to identify microRNAs (miRNAs) associated with LNM in BC and evaluate their potential diagnostic and prognostic value. Following PRISMA guidelines, a comprehensive literature search was conducted in PubMed, Web of Science, and SCOPUS databases, to assess the role of miRNAs in LNM BC.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", University of La Laguna, La Laguna, Spain.
Glycosylation patterns represent an important signature of cancer cells that can be decoded by glycan-binding proteins, i.e., lectins.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan. Electronic address:
Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!