The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709354PMC
http://dx.doi.org/10.1007/s13280-015-0698-9DOI Listing

Publication Analysis

Top Keywords

molecular tools
16
tools bathing
8
bathing water
8
culture-based methods
8
application molecular
8
molecular
5
bathing
4
water assessment
4
assessment europe
4
europe balancing
4

Similar Publications

Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.

Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.

View Article and Find Full Text PDF

The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.

View Article and Find Full Text PDF

Evaluating MicroRNAs as Diagnostic Tools for Lymph Node Metastasis in Breast Cancer: Findings from a Systematic Review and Meta-Analysis.

Crit Rev Oncol Hematol

December 2024

GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain; Biomedical Research Institute IBS-Granada. Avda. de Madrid, 15, 18012, Granada, Spain; Unidad de Patología Mamaria. Servicio de Cirugía General y Aparato Digestivo. Hospital Universitario San Cecilio. Granada; Integral Oncology Division, Virgen de las Nieves University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain; Molecular lab. Unit of Pathological Anatomy. University Hospital Virgen de las Nieves. 18016. Granada, Spain. Electronic address:

Lymph node metastasis (LNM) significantly affects the prognosis and clinical management of breast cancer (BC) patients. This systematic review and meta-analysis aim to identify microRNAs (miRNAs) associated with LNM in BC and evaluate their potential diagnostic and prognostic value. Following PRISMA guidelines, a comprehensive literature search was conducted in PubMed, Web of Science, and SCOPUS databases, to assess the role of miRNAs in LNM BC.

View Article and Find Full Text PDF

Fungal lectins show differential antiproliferative activity against cancer cell lines.

Int J Biol Macromol

December 2024

BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", University of La Laguna, La Laguna, Spain.

Glycosylation patterns represent an important signature of cancer cells that can be decoded by glycan-binding proteins, i.e., lectins.

View Article and Find Full Text PDF

Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!