High-Performance, Fullerene-Free Organic Photodiodes Based on a Solution-Processable Indigo.

Adv Mater

Centre for Organic Photonics & Electronics (COPE), School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.

Published: November 2015

A solution-processable dibromoindigo with an alkyoxyphenyl solubilizing group is developed and used as a new electron acceptor in organic photodiodes. The solution-processed fullerene-free organic photodiodes show an almost spectrally flat response with a high responsivity (0.4 A W(-1)) and a high detectivity (1 × 10(12) Jones). These values are comparable to silicon-based photodiodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201502936DOI Listing

Publication Analysis

Top Keywords

organic photodiodes
12
fullerene-free organic
8
high-performance fullerene-free
4
photodiodes
4
photodiodes based
4
based solution-processable
4
solution-processable indigo
4
indigo solution-processable
4
solution-processable dibromoindigo
4
dibromoindigo alkyoxyphenyl
4

Similar Publications

The high responsivity and broad spectral sensitivity of organic photodetectors (OPDs) present a bright future of commercialization. However, the relatively high dark current density still limits its development. Herein, two novel nonpolar p-type conjugated small molecules, NSN and NSSN, are synthesized as interface layers to enhance the performance of the OPDs, which not only can tune energy alignments and increase the reverse charge injection barrier but also can reduce the interfacial trap density.

View Article and Find Full Text PDF

A butterfly-shaped acceptor with rigid skeleton and unique assembly enables both efficient organic photovoltaics and high-speed organic photodetectors.

Natl Sci Rev

January 2025

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.

It remains challenging to design efficient bifunctional semiconductor materials in organic photovoltaic and photodetector devices. Here, we report a butterfly-shaped molecule, named WD-6, which exhibits low energy disorder and small reorganization energy due to its enhanced molecular rigidity and unique assembly with strong intermolecular interaction. The binary photovoltaic device based on PM6:WD-6 achieved an efficiency of 18.

View Article and Find Full Text PDF

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Micellar liquid chromatography (MLC) has proven beneficial efficiency and ecological impact for routine quality control activities. In the proposed study, cyrene was investigated for the first time, together with other green additives, as a novel safe organic solvent in reversed-phase MLC. Quality-by-design (QbD) approach screened their effect on the separation performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!