Moldable hydrogels that incorporate stem cells hold great promise for tissue engineering. They secure the encapsulated cells for required periods while allowing a permeable exchange of nutrients and gas with the surroundings. Core-shell fibrous structured hydrogel system represents these properties relevant to stem cell delivery and defect-adjustable tissue engineering. A designed dual concentric nozzle is used to simultaneously deposit collagen and alginate with a core-shell structured continuous fiber form in the ionic calcium bath. We aimed to impart extrinsic osteogenic cues in the nanoparticulate form, i.e., bioactive glass nanoparticles (BGn), inside the alginate shell, while encapsulating rat mesenchymal stem cells in the collagen core. Ionic measurement in aqueous solution indicated a continuous release of calcium ions from the BGn-added and -free scaffolds, whereas silicon was only released from the BGn-containing scaffolds. The presence of BGn allowed higher number of cells to migrate into the scaffolds when implanted in subcutaneous tissues of rat. Cell viability was preserved in the presence of the BGn, with no significant differences noticed from the control. The presence of BGn enhanced the osteogenic differentiation of the encapsulated rat mesenchymal stem cells, presenting higher levels of alkaline phosphatase activity as well as bone related genes, including collagen type I, bone sialoprotein and osteocalcin. Taken together, the incorporated BGn potentiated the capacity of the core-shell fibrous hydrogel system to deliver stem cells targeting bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2015.09.021 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Arch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Department of Electrical Engineering, Columbia University, New York, New York, USA.
Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Seibersdorf Labor GmbH, Seibersdorf, Austria.
The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!