The cell- and tissue-specific transcription mechanism of the TATA-less syntaxin 1A gene.

FASEB J

*Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan; and RIKEN Brain Science Institute, Neuro-Developmental Disorder Research Group, Laboratory for Developmental Neurobiology, Saitama, Japan.

Published: February 2016

Syntaxin 1A (Stx1a) plays an important role in regulation of neuronal synaptic function. To clarify the mechanism of basic transcriptional regulation and neuron-specific transcription of Stx1a we cloned the Stx1a gene from rat, in which knowledge of the expression profile was accumulated, and elucidated that Stx1a consisting of 10 exons, possesses multiple transcription initiation sites and a 204-bp core promoter region (CPR) essential for transcription in PC12 cells. The TATA-less, conserved, GC-rich CPR has 2 specific protein (SP) sites that bind SP1 and are responsible for 65% of promoter activity. The endogenous CPR, including 23 CpG sites, is not methylated in PC12 cells, which express Stx1a and fetal rat skin keratinocyte (FRSK) cells, which do not, although an exogenous methylated CPR suppresses reporter activity in both lines. Trichostatin A (TSA) and class I histone deacetylase (HDAC) inhibitors, but not 5-azacytidine, induce Stx1a in FRSK cells. Acetylated histone H3 only associates to the CPR in FRSK cells after TSA addition, whereas the high acetylated histone H3-CPR association in PC12 cells was unchanged following treatment. HDAC inhibitor induction of Stx1a was negated by mithramycin A and deletion/mutation of 2 SP sites. HDAC1, HDAC2, and HDAC8 detach from the CPR when treated with TSA in FRSK cells and are associated with the CPR in lungs, and acetylated histone H3 associates to this region in the brain. In the first study characterizing a syntaxin promoter, we show that association of SP1 and acetylated histone H3 to CPR is important for Stx1a transcription and that HDAC1, HDAC2, and HDAC8 decide cell/tissue specificity in a suppressive manner.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.15-275529DOI Listing

Publication Analysis

Top Keywords

frsk cells
16
acetylated histone
16
pc12 cells
12
stx1a
8
cpr
8
histone associates
8
hdac1 hdac2
8
hdac2 hdac8
8
cells
7
transcription
5

Similar Publications

Resin blocks and ceramic blocks for CAD/CAM crowns were cut into powders and separated into three particle size groups. Oxidative stress and cell viability were measured in 3T3 and FRSK cells. The results of cytotoxicity tended to be slightly higher for resin than for ceramics.

View Article and Find Full Text PDF

The HPC-1/syntaxin 1A () gene, which is involved in synaptic transmission and neurodevelopmental disorders, is a TATA-less gene with several transcription start sites. It is activated by the binding of Sp1 and acetylated histone H3 to the -204 to +2 core promoter region (CPR) in neuronal cell/tissue. Furthermore, it is depressed by the association of class 1 histone deacetylases (HDACs) to -CPR in non-neuronal cell/tissue.

View Article and Find Full Text PDF

Transcription regulation mechanism of the syntaxin 1A gene via protein kinase A.

Biochem J

July 2017

Department of Cell Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan.

Syntaxin 1A () is primarily involved in the docking of synaptic vesicles at active zones in neurons. Its gene is a TATA-less gene, with several transcription initiation sites, which is activated by the binding of Sp1 and acetylated histone H3 (H3) in the core promoter region (CPR) through the derepression of class I histone deacetylase (HDAC). In the present study, to clarify the factor characterizing gene expression via the protein kinase A (PKA) pathway inducing the mRNA, we investigated whether the epigenetic process is involved in the gene transcription induced by PKA signaling.

View Article and Find Full Text PDF

In 2009, a swine-origin influenza A virus - A(H1N1)pdm09 - emerged and has became a pandemic strain circulating worldwide. The hemagglutinin (HA) of influenza virus is a potential target for the development of anti-viral therapeutic agents. Here, we generated mAbs by immunization of baculovirus-insect expressing trimeric recombinant HA of the A(H1N1)pdm09 strain.

View Article and Find Full Text PDF

The cell- and tissue-specific transcription mechanism of the TATA-less syntaxin 1A gene.

FASEB J

February 2016

*Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan; and RIKEN Brain Science Institute, Neuro-Developmental Disorder Research Group, Laboratory for Developmental Neurobiology, Saitama, Japan.

Syntaxin 1A (Stx1a) plays an important role in regulation of neuronal synaptic function. To clarify the mechanism of basic transcriptional regulation and neuron-specific transcription of Stx1a we cloned the Stx1a gene from rat, in which knowledge of the expression profile was accumulated, and elucidated that Stx1a consisting of 10 exons, possesses multiple transcription initiation sites and a 204-bp core promoter region (CPR) essential for transcription in PC12 cells. The TATA-less, conserved, GC-rich CPR has 2 specific protein (SP) sites that bind SP1 and are responsible for 65% of promoter activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!