Topological insulators (TIs) are an unusual phase of quantum matter with nontrivial spin-momentum-locked topological surface states (TSS). The electrical detection of spin-momentum-locking of TSS has been lacking till very recently. Many of the results are from samples with significant bulk conduction, such as Bi2Se3, where it can be challenging to separate the surface and bulk contribution to the spin signal. Here, we report spin potentiometric measurements in flakes exfoliated from bulk insulating Bi2Te2Se crystals, using two outside nonmagnetic contacts for driving a DC spin helical current and a middle ferromagnetic (FM)-Al2O3 contact for detecting spin polarization. The voltage measured by the FM electrode exhibits a hysteretic step-like change when sweeping an in-plane magnetic field between opposite directions along the easy axis of the FM contact. Importantly, the direction of the voltage change can be reversed by reversing the direction of current, and the amplitude of the change as measured by the difference in the detector voltage between opposite FM magnetization increases linearly with increasing current, consistent with the current-induced spin polarization of spin-momentum-locked TSS. Our work directly demonstrates the electrical injection and detection of spin polarization in TI and may enable utilization of TSS for applications in nanoelectronics and spintronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585757 | PMC |
http://dx.doi.org/10.1038/srep14293 | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NORR), a pioneering approach towards NH production involving the conversion from diamagnetic NO to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO to investigate MFE on NORR.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
We study properties of a light field at the tight focus of the superposition of two different-order cylindrical vector beams (CVBs). In the source plane, this superposition has a polarization singularity index amounting to the half-sum of the numbers of two constituent CVBs, while having neither spin angular momentum (SAM) nor transverse energy flow. We show that if the constituent CVBs have different-parity numbers, in the focal plane there occur areas that have opposite-sign longitudinal SAM projections, alongside areas of opposite-handed energy flows rotating on closed paths (clockwise and anticlockwise).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!