Superparamagnetic iron oxide nanoparticle (SPION) holds great potential as a gene delivery system due to its unique properties, such as good biocompatibility and non-invasive targeting ability. In this study, we modified SPION with chitosan-graft-PEI (CHI-g-PEI) and PK11195, to fabricate a mitochondria-targeting gene carrier, PK-CP-SPION. PK-CP-SPION manifested prominent physicochemical properties for magnetic guided gene delivery, and it could effectively condense and protect DNA at proper weight ratios. The in vitro cytotoxicity of PK-CP-SPIONs was mild. Under an external magnetic field, the transfection efficiency of PK-CP-SPIONs was comparable to PEI 25 K with shorter transfection time. PK11195 facilitated the specific accumulation of PK-CP-SPIONs in mitochondria, leading to the leakage of cytochrome c, the dissipation of mitochondrial membrane potential and subsequently the activation of mitochondria apoptosis pathway. These results indicated that with further development, PK-CP-SPIONs could serve as a multifunctional nanoplatform for magnetic targeting gene delivery and mitochondria-targeting therapy, leading enhanced therapeutic effect towards tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/1061186X.2015.1087527 | DOI Listing |
Mol Ther
January 2025
Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:
Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.
View Article and Find Full Text PDFSci Rep
January 2025
Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFJ Clin Lipidol
December 2024
Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, 3004-561, Coimbra, Portugal.
Tangier disease is an extremely rare autosomal recessive monogenic disorder caused by mutations in the ATP binding cassette transporter A1 gene (ABCA1). It is characterized by severe deficiency or absence of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA1), with highly variable clinical presentations depending on cholesterol accumulation in macrophages across different tissues. We report a case of a 47-year-old man with very low HDL-C and very high triglyceride levels, initially attributed to the patient's metabolic syndrome, alcohol abuse, and splenomegaly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!