We've estimated the cellular and metabolic part of geroprophylactic effects of short synthetic tripeptides vesugen and pinealon for correction of the biological age. 32 people (18 men, 12 women) aged 41-83 years with polymorbidity and the organic brain syndrome in remission participated in the study. The preparations of "Pinealon" and "Vesugen" have had the significant anabolic effect. They have improved the activity of the Central nervous system and other vital organs, which slows the rate of aging by biological age indicators. Vesugen has demonstrated more visible geroprophylactic effect than Pinealon. At the same time we've found the prooxidant activity through chemiluminescence. Decrease of markers CD34+ positive hematopoietic polypotent cells in blood has shown significant inhibition of hemopoiesis. Apparently, the cells have not been involved in the adaptive reactions. Pinealon and Vesugen haven't affected the degree of chromatin condensation, so they are safe on nuclear genetic level. This property should be studied in future. In geriatric practice, we recommend to apply the peptides Pinealon and Vesugen as geroprotectors anabolic neuroprotective and no antioxidant type for reducing the rate of aging in patients with the organic brain syndrome vascular and/or traumatic genesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

organic brain
12
brain syndrome
12
aging patients
8
polymorbidity organic
8
central nervous
8
nervous system
8
biological age
8
rate aging
8
pinealon vesugen
8
[effect synthetic
4

Similar Publications

Cell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.

View Article and Find Full Text PDF

Side-Gated Iontronic Memtransistor: A Fast and Energy-Efficient Neuromorphic Building Block.

Small

January 2025

eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala, 695551, India.

Iontronic memtransistors have emerged as technologically superior to conventional memristors for neuromorphic applications due to their low operating voltage, additional gate control, and enhanced energy efficiency. In this study, a side-gated iontronic organic memtransistor (SG-IOMT) device is explored as a potential energy-efficient hardware building block for fast neuromorphic computing. Its operational flexibility, which encompasses the complex integration of redox activities, ion dynamics, and polaron generation, makes this device intriguing for simultaneous information storage and processing, as it effectively overcomes the von Neumann bottleneck of conventional computing.

View Article and Find Full Text PDF

Eudesmane-type sesquiterpene lactone isoalantolactone 1 is of great interest due to its availability, biological activity and synthetic application. Respective series of original spirocyclic (11S,5') (1,2,3-triazoline-eudesma-4,15-enolides) and (11S)-aziridine-eudesma-4,15-enolides were efficiently synthesized via a chemoselective 1,3-dipolar cycloaddition reaction of organic azides to the exocyclic double bond of the lactone ring of isoalantolactone or 13E-(aryl)isoalantolactones by heating in DMF or toluene. The thermal reactions of isoalantolactone with benzyl azide, 2-azidoethanol, or n-butyl azide in 2-methoxyethanol afforded 13-(alkyamino)isoalantolactones formed as a mixture of (Z) and (E)-isomers.

View Article and Find Full Text PDF

The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.

View Article and Find Full Text PDF

The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!