Visualization of the trajectories of moving objects leads to dense and cluttered images, which hinders exploration and understanding. It also hinders adding additional visual information, such as direction, and makes it difficult to interactively extract traffic flows, i.e., subsets of trajectories. In this paper we present our approach to visualize traffic flows and provide interaction tools to support their exploration. We show an overview of the traffic using a density map. The directions of traffic flows are visualized using a particle system on top of the density map. The user can extract traffic flows using a novel selection widget that allows for the intuitive selection of an area, and filtering on a range of directions and any additional attributes. Using simple, visual set expressions, the user can construct more complicated selections. The dynamic behaviors of selected flows may then be shown in annotation windows in which they can be interactively explored and compared. We validate our approach through use cases where we explore and analyze the temporal behavior of aircraft and vessel trajectories, e.g., landing and takeoff sequences, or the evolution of flight route density. The aircraft use cases have been developed and validated in collaboration with domain experts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2015.2467112DOI Listing

Publication Analysis

Top Keywords

traffic flows
20
extract traffic
8
density map
8
traffic
6
flows
6
visualization selection
4
selection analysis
4
analysis traffic
4
flows visualization
4
visualization trajectories
4

Similar Publications

IoT (Internet of Things) networks are vulnerable to network viruses and botnets, while facing serious network security issues. The prediction of payload states in IoT networks can detect network attacks and achieve early warning and rapid response to prevent potential threats. Due to the instability and packet loss of communications between victim network nodes, the constructed protocol state machines of existing state prediction schemes are inaccurate.

View Article and Find Full Text PDF

The growing integration of Information and Communication Technology into Operational Technology environments in electrical substations exposes them to new cybersecurity threats. This paper presents a comprehensive dataset of substation traffic, aimed at improving the training and benchmarking of Intrusion Detection Systems (IDS) installed in these facilities that are based on machine learning techniques. The dataset includes raw network captures and flows from real substations, filtered and anonymized to ensure privacy.

View Article and Find Full Text PDF

Three phases of matter intermingle in various environments. The phenomena behind these fluctuations provide microbial cultures with beneficial interphase on the borderlines. Correspondingly, a bioreactor broth usually consists of a liquid phase but also contains solid particles, gas bubbles, technical surfaces, and other niches, both on a visible scale and microscopically.

View Article and Find Full Text PDF

The present study describes the data sets produced in Warsaw, Poland with the aim of developing tools and methods for the implementation of human-centred and data-driven solutions to the enhancement of sustainable mobility transition. This study focuses on school commutes and alternatives to private cars for children drop off and pick up from primary schools. The dataset enables the complex analysis of interactions between determinants of transport mode choice, revealed choices, and air quality impact.

View Article and Find Full Text PDF

Emergence of social phases in human movement.

Phys Rev E

October 2024

Department of Physics, University of Miami, Coral Gables, Florida 33146, USA.

Article Synopsis
  • - Recent studies on animal movements show different thermodynamic phases, but similar insights for human movement, especially at low speeds, are lacking.
  • - Using ultrawideband RFID technology, researchers gathered detailed movement data from children in various settings, identifying two unique phases: a gaslike phase of freedom and a liquid-vapor phase indicating small social group formations.
  • - The study introduces a statistical physics model that replicates these observed phases and suggests that UWB-RFID can also aid research in broader areas like animal behavior and human interactions in complex systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!