AI Article Synopsis

  • Discharge of the endocrine disruptor bisphenol A (BPA) from wastewater treatment plants harms aquatic life, prompting research into BPA degradation by the bacteria Sphingobium sp. BiD32, which was isolated for this ability.
  • The study utilized label-free quantitative proteomics to analyze the protein changes in Sphingobium sp. BiD32 when exposed to BPA, identifying 2155 proteins, with 184 showing significant changes.
  • A novel enzyme related to the degradation of BPA was found, suggesting its potential role as a genetic marker for future studies in BPA metabolism.

Article Abstract

Discharge of the endocrine disrupting compound bisphenol A (BPA) with wastewater treatment plant (WWTP) effluents into surface waters results in deleterious effects on aquatic life. Sphingobium sp. BiD32 was previously isolated from activated sludge based on its ability to degrade BPA. This study investigated BPA metabolism by Sphingobium sp. BiD32 using label-free quantitative proteomics. The genome of Sphingobium sp. BiD32 was sequenced to provide a species-specific platform for optimal protein identification. The bacterial proteomes of Sphingobium sp. BiD32 in the presence and absence of BPA were identified and quantified. A total of 2155 proteins were identified; 1174 of these proteins were quantified, and 184 of these proteins had a statistically significant change in abundance in response to the presence/absence of BPA (p ≤ 0.05). Proteins encoded by genes previously identified to be responsible for protocatechuate degradation were upregulated in the presence of BPA. The analysis of the metabolites from BPA degradation by Sphingobium sp. BiD32 detected a hydroxylated metabolite. A novel p-hydroxybenzoate hydroxylase enzyme detected by proteomics was implicated in the metabolic pathway associated with the detected metabolite. This enzyme is hypothesized to be involved in BPA degradation by Sphingobium sp. BiD32, and may serve as a future genetic marker for BPA degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b02987DOI Listing

Publication Analysis

Top Keywords

sphingobium bid32
28
bpa degradation
12
bpa
9
degradation sphingobium
8
sphingobium
7
bid32
7
degradation
5
identification putative
4
putative genes
4
genes involved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!